Facial dysmorphism across the fetal alcohol spectrum

Peter Hammond

Molecular Medicine Unit
UCL Institute of Child Health, London, UK
New objective techniques to assess facial dysmorphism in FASD

- FAS/PFAS and those without classic features
- young infants in 1st year of life
- disorders with overlapping facial features

RESULTS AND RELEVANCE HERE
TECHNICAL ASPECTS ELSEWHERE
Suttie et al: Pediatrics, on line Feb 26th 2013
FASD Diagnostic Criteria

<table>
<thead>
<tr>
<th>FASD</th>
<th>FAS</th>
<th>PFAS</th>
<th>Heavy Exposure (HE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol Exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal exposure of 1 oz AA/day OR ≥ 4 binges of at least 2 oz AA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Face</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpebral fissure width ≤10th %tile</td>
<td>≥ 2 of 3</td>
<td>≥ 2 of 3</td>
<td></td>
</tr>
<tr>
<td>Thin upper lip (4/5 on Astley scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth philtrum (4/5 on Astley scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height/weight ≤10th %tile</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head circumference ≤10th %tile</td>
<td>≥ 1 of 2</td>
<td>≥ 1 of 4</td>
<td></td>
</tr>
<tr>
<td>Structural brain anomaly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behaviour/Cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioural or cognitive abnormalities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D facial photographs
FACIAL DYSMORPHISM ACROSS THE FETAL ALCOHOL SPECTRUM

192 Cape Coloured Children South Africa

with Sandy Jacobsen & Joseph Jacobsen

FAS = 22 ; PFAS = 26 ; HC = 69;
non-syndromic HE = 75
FACES
COMPARISON OF FACE OF CHILD WITH FAS TO AVERAGE OF MATCHED CONTROLS

Front view
- smooth upper lip
- inner eye folds

Profile view
- short nose
- flat nasal bridge
- mid-facial flatness
- backward rotation of lower jaw

FACE SIGNATURE

FACE SHAPE
NORMALISED
AGAINST
CONTROLS

Red- 2 S.D. deflated
Blue- 2 S.D. inflated
Green- coincident
FACE SIGNATURES: CHIDREN WITH FASD
IDENTIFYING UPPER LIP SMOOTHNESS

Red - deflated
Blue - inflated
Green - coincident

±1.0 SD
±1.5 SD
2.0 SD
SIGNATURE GRAPH
clusters faces with similar shape differences from matched controls
SIGNATURE GRAPH: FAS, PFAS & HE
SIGNATURE GRAPH: FAS, PFAS & HE
SIGNATURE GRAPH: FAS, PFAS & HE

HE2
facial differences more control like than FAS/PFAS

HE1
facial differences more FAS/PFAS like than control
SIGNATURE GRAPH: FAS, PFAS & HE

<table>
<thead>
<tr>
<th></th>
<th>HE2</th>
<th>HC</th>
<th>HE1 vs HE2 (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC IQ</td>
<td>73.3</td>
<td>73.3</td>
<td>-1.80†</td>
</tr>
<tr>
<td>CVLT-C 1</td>
<td>47.3</td>
<td>45.8</td>
<td>-2.02*</td>
</tr>
<tr>
<td>CVLT-C 2</td>
<td>93.7</td>
<td>93.2</td>
<td>-1.89†</td>
</tr>
</tbody>
</table>

† p < 0.08
* p < 0.05

<table>
<thead>
<tr>
<th></th>
<th>HE1</th>
<th>FAS</th>
<th>PFAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC IQ</td>
<td>65.5</td>
<td>65.4</td>
<td>63.0</td>
</tr>
<tr>
<td>CVLT-C 1</td>
<td>40.0</td>
<td>42.7</td>
<td>41.5</td>
</tr>
<tr>
<td>CVLT-C 2</td>
<td>84.3</td>
<td>88.5</td>
<td>88.3</td>
</tr>
<tr>
<td>Differential Diagnoses for FASD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|---------------------------------
| Aarskog |
| Cornelia de Lange (n=50) |
| Dubowitz |
| Fetal hydantoin |
| Fetal valproate |
| Maternal PKU fetal effects |
| Noonan/CFC/Costello (50) |
| Toluene embryopathy |
| Williams (65) |

SCREENING FOR CDLS FACIAL FEATURES

- CONTROLS
- CdLS

Graph showing data points for CONTROLS and CdLS on a scatter plot.
SCREENING FOR CDLS FACIAL FEATURES

- CdLS

HC-CDLS

-2 -1 0 1 2
DIFFERENTIAL DIAGNOSES FOR FASD
DIFFERENTIAL DIAGNOSES FOR FASD

- EXPOSED-FAS/PFAS
- EXPOSED-HE
- CDLS
- RAS
- WS

HC-WS
HC-RAS
HC-CDLS
DIFFERENTIAL DIAGNOSES FOR FASD
DIFFERENTIAL DIAGNOSES FOR FASD

<table>
<thead>
<tr>
<th></th>
<th>FASD (n=60)</th>
<th>SYND (n=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASD</td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td>SYND</td>
<td>2%</td>
<td>98%</td>
</tr>
</tbody>
</table>

- EXPOSED-FAS/PFAS
- EXPOSED-HE
- CDLS
- RAS
- WS
IN SUMMARY

- CAMERA ISSUES – 3D cameras expensive & rare resource; BUT 3D webcams and smaller/cheaper 3D cameras are imminent
Acknowledgements

CHILDREN & FAMILIES FOR VOLUNTEERING

UCL ICH
Mike Suttie

CIFASD
Tina Chambers
Tatiana Foroud
Sarah Mattson
Ed Riley
Jeff Rogers
Leah Wetherill

PASS NETWORK
Amy Elliot
Coen Groenewald
Hein Odendaal

WAYNE STATE
Sandy Jacobsen
Joseph Jacobsen