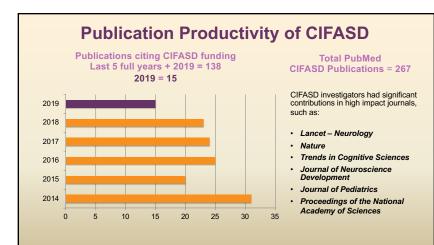
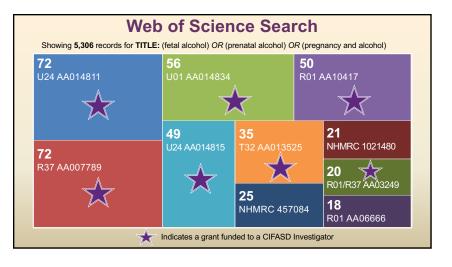

CIFASD4 Fall 2019 Mtg. Presentation Drafts As of 10/11/2019 NIAAA, Bethesda, MD

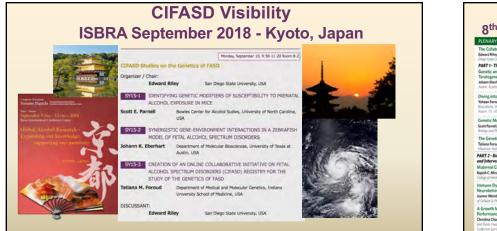
Table of Contents


Page	CIFASD4 Project and PIs (order of agenda)
3	Administrative Core of the CIFASD, Ed Riley
9	Image analysis of neurofacial effects of PAE, Mike Suttie and Alison Noble
15	A multisite neurobehavioral assessment of FASD, Sarah Mattson
19	Multi-modal connectivity methods for the validation of FASD diagnostic criteria, Jeff Wozniak
25	Development and evaluation of an evidence-based mobile health caregiver intervention for FASD, Christie Petrenko and Cristiano Tapparello
32	Exploring the genetics of FASD in complementary mouse and fish models, Scott Parnell and Johann Eberhart
45	FASD in adults: Health and neurobehavior, Claire Coles
51	Dissecting the genetic contributions to FASD, Tatiana Foroud and Leah Wetherill
56	Early predictors of FASD in Ukraine, Tina Chambers and Rajesh Miranda
73	Immune dysregulation in FASD: Programming of health and neurobehavioral outcomes, Joanne Weinberg (represented by Tamara Bodnar)
78	Dysmorphology Research Resource Core, Ken Jones and Miguel del Campo
84	Prenatal alcohol effects on the gut microbiome contributing to failure to thrive and altered immune function, Tom Blanchard and Sandra Mooney
90	Biomarker for intellectual disability in children prenatally exposed to alcohol, Kazue Hashimoto-Torii and Masaaki Torii

CIFASD ADMII PI, Coordinator: Scientific Director: Admin. Specialist: Admin. Coordinator:	NISTRATIVE COI Ed Riley, SDSU Michael Charnes Jennifer Thomas Jill Vander Velde	ss, Harvard s, SDSU
SCIENCE ADVISORY BOARD John Hannigan Sara Jo Nixon James Reynolds Daniel Savage TBD Member	Chaired by Cha T. Blanchard*/ S. Mooney* C. Chambers C. Coles T. Foroud	COMMITTEE arness and Riley K.L. Jones S. Mattson S. Parnell*/ J. Eberhart* C. Petrenko*/
NIAAA ADVISORS Bill Dunty, Project Scientist Joe Wang, Program Officer	K. Hashimoto-Torii*/ M. Torii* A. Noble*/ M. Suttie* * Multiple PI project	C. Tapparello* J. Weinberg J. Wozniak

NIH National on Alcoh and Alcoh	ASD Institute ol Abuse	ASD4 Ju	ne 2017 –	May	2022
CIFASD4 Core/Project	PI(s)	U01: Ukraine	Tina Chambers		1
U24: AdminC	Ed Riley	U01: Adults	Claire Coles	Á	
U24: Dysmorphology	Ken Jones	U01: Human Genetics	Tatiana Foroud	A	
Genes TACT		U01: 3D/2D Images	Alison Noble and Mike Suttie		
Early Identification	icroRNA	U01: Neurobehavior	Sarah Mattson		
Education Dysmorp	Genesias	U01: Mouse and Fish Genetics	Scott Parnell and Johann Eberhart	(
FASD 3D		U01: Mobile Intervention	Christie Petrenko and Cristiano Tapparello	UH2: Microbiome	Tom Blanchard and Sandra Mooney
		U01: Immune	Joanne Weinberg	UH2:	Kazue Hashimoto-Torii
		U01: Neuroimaging	Jeff Wozniak	Biomarkers	




2019 Publications n=15

- Aiton N, Huang R, Fernandez R, Mills M, Suttie M. Novel techniques for the analysis of face-brain morphology in babies and adolescents with prenatal alcohol exposure (PNAE). Archives of Disease in Childhood, 2019;104 (Suppl 2):A79.
- Aiton N, Suttie M, Ferguson A. Identifying facial features associated with prenatal alcohol exposure in newborn infants using 2D and 3D imaging. Archives of Disease in Childhood, 2019;104 (Suppl 2):A87-A88.
- Bandoli G, Coles CD, Kable JA, Wertelecki W, Yevtushok L, Zymak-Zakutnya N, Wells A, Granovska IV, Pashtepa AO, Chambers CD, and the CIFASD. Patterns of prenatal alcohol use that predict infant growth and development. *Pediatrics*, 2019;143(2). pii: e20182399. PMCID: PMC6361345
- Barrett CE, Kable JA, Madsen TE, Hsu CC, Coles CD. The use of functional near-infrared spectroscopy to differentiate alcohol-related neurodevelopmental impairment. *Dev Neuropsychol.*, 2019;44(2):203-219. PMCID: PMC6423538
- Buckley DM, Sidik A, Kar RD, Eberhart JK. Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish. *Birth Defects Res.*, 2019;11(12):700-713. PMCID: PMC6650308
- Coles CD, Kable JA, Granovska IV, Pashtepa AO, Plotka LD, Dolhov VB, Wertelecki W, Jones KL, Chambers CD, and the CIFASD. Gestational age and socioeconomic status as mediators for the impact of prenatal alcohol exposure on development at 6 months. *Birth Defects Res.*, 2019;111(12):789-796. PMCID: PMC6494703.
- Doyle LR, Coles CD, Kable JA, May PA, Sowell ER, Jones KL, Riley EP, Mattson SN, and the CIFASD. Relation between adaptive function and IQ among youth with histories of heavy prenatal alcohol exposure. *Birth Defects Res.*, 2019;111(12):812-821. PMCID: PMC6650363

2019 Publications n=15

- Doyle LR, Glass L, Wozniak JR, Kable JA, Riley EP, Coles CD, Sowell ER, Jones KL, Mattson SN, and the CIFASD. Relation between oppositional/conduct behaviors and executive function among youth with histories of heavy prenatal alcohol exposure. ACER, 2019;43(5):1135-1144. PMCID: PMC6551300
- Fernandes Y, Rampersad M, Eberhart JK. Social behavioral phenotyping of the zebrafish casper mutant following embryonic alcohol exposure. *Behav Brain Res.*, 2019;356:46-50. PMCID: PMC6476196
- Fernandes Y, Rampersad M, Jones EM, Eberhart JK. Social deficits following embryonic ethanol exposure arise in postlarval zebrafish. Addict Biol., 2019;24(5):898-907. PMC6629526
- Gangisetty O, Sinha R, Sarkar DK. Hypermethylation of proopiomelanocortin and period 2 genes in blood are associated with greater subjective and behavioral motivation for alcohol in humans. ACER, 2019;43(2):212-220. PMCID: PMC6370509
- Mattson SN, Bernes GA, Doyle LR. Fetal Alcohol Spectrum Disorders: A Review of the neurobehavioral deficits associated with prenatal alcohol exposure. ACER, 2019;43(6):1046-1062. Review. PMCID: PMC6551289
- Sarkar DK, Gangisetty O, Wozniak JR, Eckerle JK, Georgieff MK, Foroud TM, Wetherill L, Wertelecki W, Chambers CD, Riley E, Zymak-Zakutnya N, Yevtushok L. Persistent changes in stress regulatory genes in pregnant woman or a child with prenatal alcohol exposure. *ACER*, 2019, In press.
- Tseng AM, Mahnke AH, Wells AB, Salem NA, Allan AM, Roberts VH, Newman N, Walter NA, Kroenke CD, Grant KA, Akison LK, Moritz KM, Chambers CD, Miranda RC, and the CIFASD. Maternal circulating miRNAs that predict infant FASD outcomes influence placental maturation. *Life Sci Alliance*, 2019;2(2). pii: e201800252. PMCID: PMC6399548 Wozniak JR, Riley EP, Charness ME. Clinical presentation, diagnosis, and management of Fetal Alcohol Spectrum Disorder. *The Lancet-Neurology*, 2019;18(8):760-770. Impact Factor: 27.

CIFASD Connections and Impact

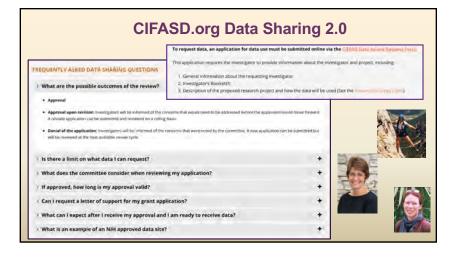
Meeting with the FASD Change Makers Leadership Committee 8th Int'l Conference on FASD March 2019 - Vancouver, Canada

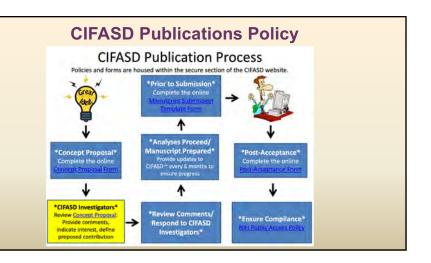
OF FASD CHANGE MAKERS: SURVEY ABOUT LIFE AS WE LIVE IT FOR OLDER TEENS AND ADULTS WHO HAVE FASD OR THINK THEY DO

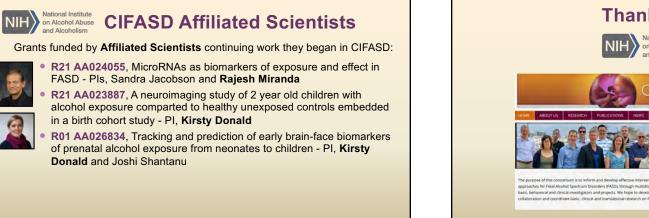
22 28 Jun 2010 🗭 Lanne a comment

Myles Himmelreich, CJ Lutke, Katrina Griffin, Justin Mitchell, Anique Lutke, Emily Travis-Hargrove

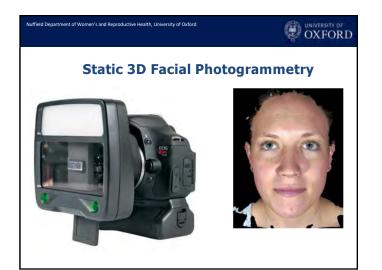
LAY OF THE LAND SURVEY 12: WHAT REALLY MATTERS? A SURVEY ABOUT LIFE AS WE LIVE IT FOR OLDER TEENS AND ADULTS WHO HAVE FASD OR THINK THEY DO



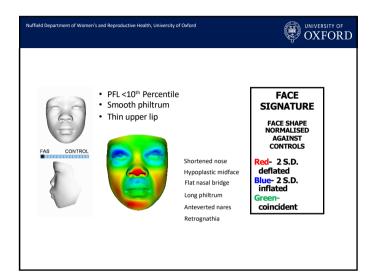


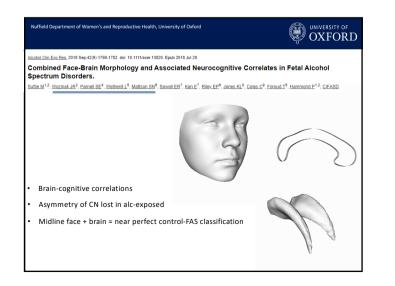

ATA SHARIN		NOME		63-	CIFA	SD		
CCESSING C		HOME						
CCESSING C	EASD RESEAR	HOME	the second s	-			_	
	THE RESERVE	CH DATA	ABOUT US BESE	VICH PURICATIONS N	EWS PARTICIP	WIE EDUCATION	V RESOURCES	CONTACT D
		ta available for disco						
terventions, ad outcome v		f FASD. Archived dat	a from the pre	evious three Phases	of CIFASD	vary in term	s of popula	tion studied
		e and the type of data	that are availabl	e, please click on the a	appropriate o	ell within the	Table below	
								_
			3D FACIAL	NEUROBEHAVIOR			Concession of the local division of the loca	burner of the second
PHASE	DEMOGRAPHIC	S DYSMORPHOLOGY	IMAGING	ALONODEINATION	DATA	VOLUME	DATA	DATA
PHASE Phase 1 (2003-	DEMOGRAPHIC			~		and the second sec		
	DEMOGRAPHIC		IMAGING	J		and the second sec		
Phase 1 (2003- 2007)	4	4	IMAGING	*	DATA	and the second sec	DATA	
Phase 1 (2003-			IMAGING			and the second sec		
Phane 1 (2003- 2007) Phase 2 (2007-	4	4	IMAGING	*	DATA	and the second sec	DATA	

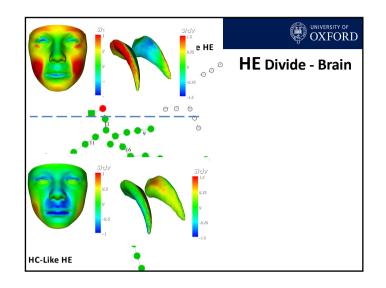
Cl	FAS	5D4 P	ro	gre	SS	Frack	ing	J			
Chambers U01 Ukraine	Current Month	Cumulative Total	May 2020 Goal	% to Goal	Overall Goal	Completion Goal Date	May 2018 Goal	May 2019 Goal	May 2020 Goal	May 2021 Goal	May 202 Goa
Newly Recruited Mothers											
Exposed mothers	2	50	110	50.9%	120	5/31/2020	10	60	110	120	120
Low/unexposed mothers	1.	44	76	57.9%	80	5/31/2020	6	41	76	80	BO
Neurobehavioral Testing		A COLOR			-			-		-	-
School age exposed	3	35	54	64.8%	80	5/31/2021	0	27	54	80	80
School age low/unexposed	D	47	70	67.1%	70	5/31/2021	0	24	47	70	70
6 mo. old infants exposed	3	9	35	25.7%	60	5/31/2021	0	8	34	60	60
6 mo. old infants low/unexposed	1	9	22	40.9%	40	5/31/2021	0	4	22	40	40
12 mo. old infants exposed	1	1	8	12.5%	60	1/1/2022	0	0	8	34	60
12 mo. old infants low/unexposed	0	0	-4	0.0%	40	1/1/2022	0	0	4	22	40
Blood Samples Collected	1.00	0.00	100		1.1.1	a construction of the			1.00 201	1.00	1
Infants exposed	0	1	45	2.2%	80	5/31/2021	0	10	45	80	80
Infants low/unexposed	0	1	34	2.9%	60	5/31/2021	0	8	34	60	60
School age children exposed	1	22	26	84.6%	40	5/31/2021	0	13	26	40	40
School age children low/unexposed	1	25	20	125.0%	30	5/31/2021	0	10	20	30	30
2D Ultrasounds	10000	0					1.00			1.1.1	
Exposed mothers	2	62	110	56,4%	120 -	5/31/2020	10	- 60 -	110	120	120
Low/unexposed mothers	2	56	76	73.7%	80	5/31/2020	6	41	76	80	80
3D Images						and the second se					
Exposed school age children	2	18	24	75.0%	35	5/31/2021	0	12	24	35	35
Low/unexposed school age children	0	16	20	80,0%	30	5/31/2021	Ő	10	20	30	30

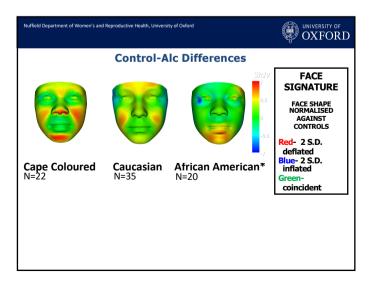


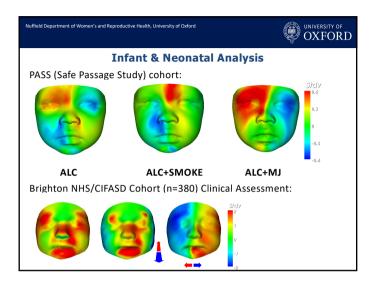
Project Objectives

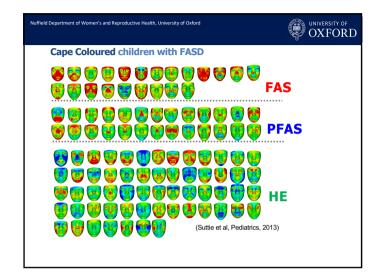

 Enhance the understanding of dysmorphology in alcohol exposed populations who do not exhibit criteria eligible for a FAS diagnosis

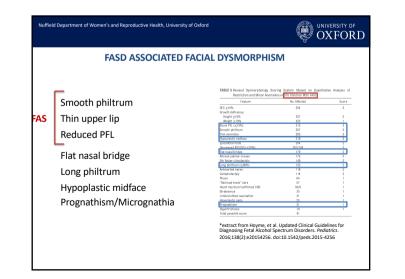

Nuffield Department of Women's and Reproductive Health, University of Oxford

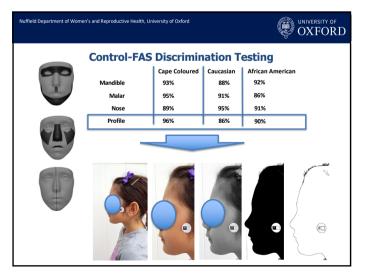

- Improving analysis of face-neurocognitive-alcohol interactions.
- Fetal ultrasound analysis to detect facial, cranial and neural effects of prenatal alcohol exposure with neonatal follow-up.
- Develop a screening tool utilising 3D facial images to support accurate identification of FASD associated features

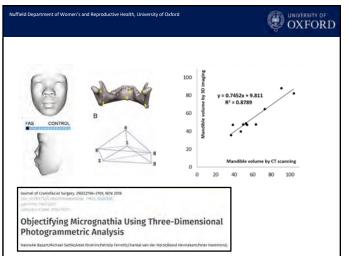


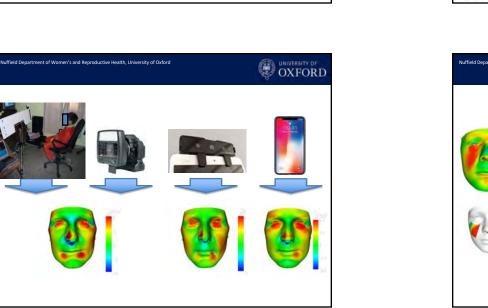


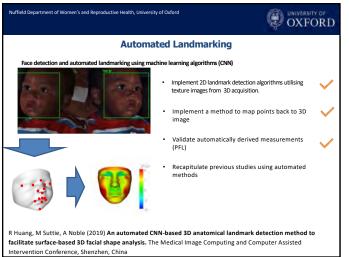


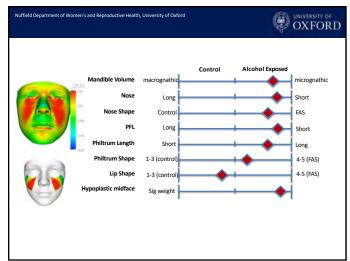


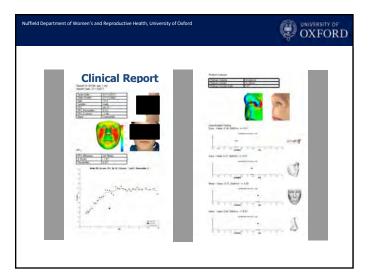












Publications CIFASD4

 R Huang, M Suttie, A Noble (2019) An automated CNN-based 3D anatomical landmark detection method to facilitate surface-based 3D facial shape analysis. The Medical Image Computing and Computer Assisted Intervention Conference, Shenzhen, China

uffield Department of Women's and Reproductive Health, University of Oxford

- Alton N, Huang R, Fernandez R, Mills M, Suttle M (2019) Novel techniques for the analysis of facebrain morphology in babies and adolescents with prenatal alcohol exposure (PNAE). Archives of Disease in Childhood May 2019, 104 (Suppl 2) A79; DOI: 10.1136/archdischild-2019-rcpch.190
- Aiton N, Suttie M, Ferguson A (2019) Identifying facial features associated with prenatal alcohol exposure in newborn infants using 2D and 3D imaging. Archives of Disease in Childhood May 2019, 104 (Suppl 2) A87-A88, DOI: 10.1136/archdischild-2019-rcpch.210
- Suttie M, Wozniak JR, Parnell SE, Wetherill L, Mattson SN, Sowell ER, Kan E, Riley EP, Jones KL, Coles C, Foroud T, Hammond P; CIFASD (2018) Combined Face-Brain Morphology and Associated Neurocognitive Correlates in Fetal Alcohol Spectrum Disorders.Alcohol Clin Exp Res. 2018 Sep;42(9):1769-1782. doi: 10.1111/acer.13820
- Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE (2018) The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res. 2018 Feb 15;338:173-184. doi: 10.1016/j.bbr.2017.10.020
- Suttie M, Wetherill L, Jacobson SW, Jacobson JL, Hoyme HE, Sowell ER, Coles C, Wozniak JR, Riley EP, Jones KL, Foroud T, Hammond P; CIFSAD (2017) Facial Curvature Detects and Explicitates Ethnic Differences in Effects of Prenatal Alcohol Exposure. ACER 41(8):1471-1483.
- *2 journal manuscripts currently in preparation: Infant and Neonatal Study, African American cohort facial analysis

UNIVERSITY OF OXFORD

Collaboration:

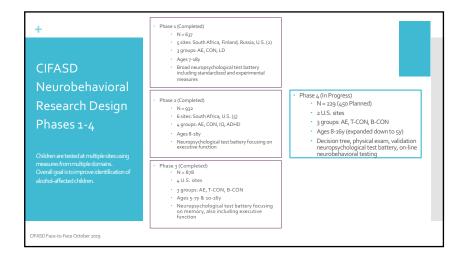
Nuffield Department of Women's and Reproductive Health, University of Oxford

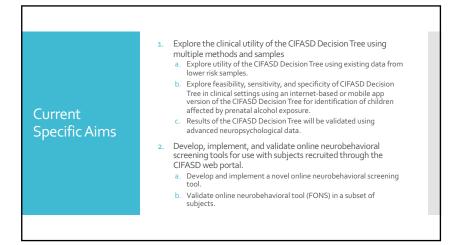
Tina Chambers (San Diego) - Ukraine 3D facial images revisited with a preliminary analysis complete

Sarah Mattson (San Diego) – Planned synergy between decision tree and 3D facial analysis tool, testing tablet based image capture and transfer to produce automated measurements

Tatiana Foroud, Leah Wetherill (Indiana) – We have recently been working to investigate if any facial differences are apparent from the different gene carrier groups identified from whole-exome sequencing (*KIF2A*, *HTT and CRIPAK*).

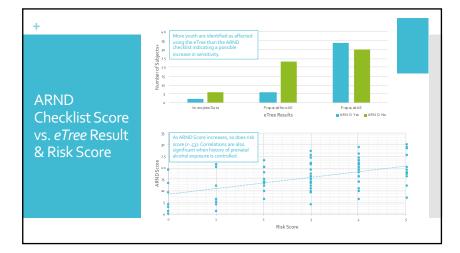
Tatiana Foroud, Clare Coles and Joanne Weinberg – working with these members to collect 2D and 3D image data.

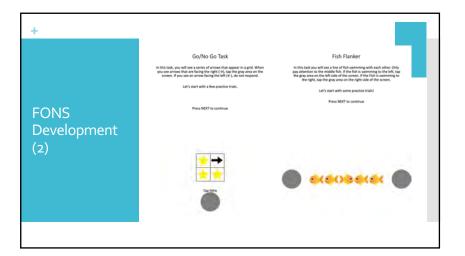

Jeff Wozniak, worked closely in the analysis of face-neurocognitive-alcohol interactions publication

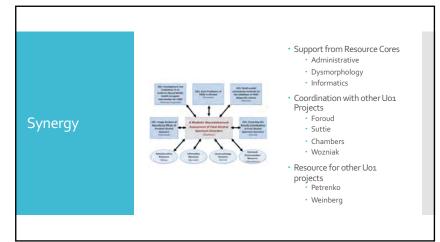

Scott Parnell, currently collaborating for infant/neonatal study where we are seeing smoke/drug-alcohol interactions.

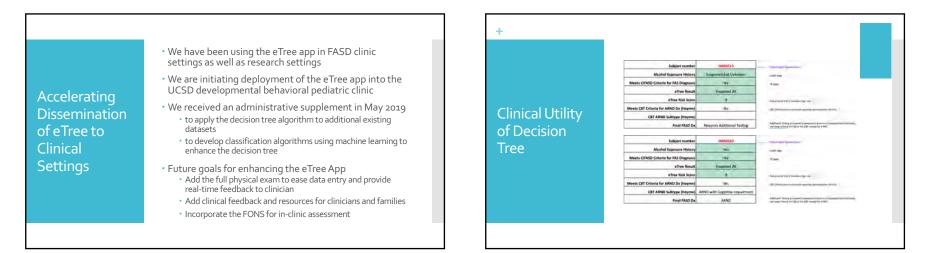
Huang	CIFASD: Ed Riley Leah Wetherill	UK National FASD Clinic: Raja Mukherjee
usiei	Tatiana Faroud Sarah Mattson	Brighton UK: Neil Aiton
son	Ken Jones Clare Coles Jeff Wozniak	
cobson son	Ken Jones Clare Coles	National Institu

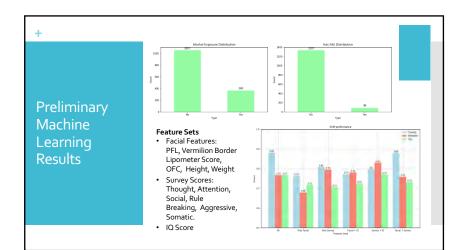
Originally funded in 2003
Currently in 4th phase, 16th project year
Overarching focus is on neurobehavioral effects of prenatal alcohol exposure
Studies have included multiple data collection sites in the U.S., South Africa, Russia, and Finland

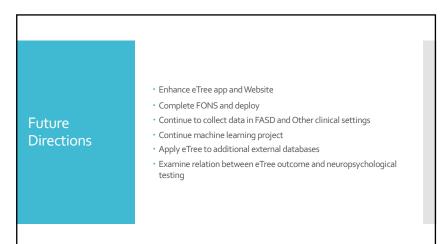



CIFASD Face-to-Face October 2019


Agreement Between CoFASP Diagnosis and eTree ApplicationFasultFASDPFAS FASDARNDNo FASDUnable to DxTotalProposed AE531131013153Proposed AE012346934743Total543477947896Agreement100%72%28%87%83%
Agreement Between CoFASP Diagnosis and eTree ApplicationProposed AE531131013153Total543477947896
Between CoFASP Proposed AE 5 31 13 101 3 153 Diagnosis and eTree Application Proposed Non-AE 0 12 34 693 4 743 Total 5 43 47 794 7 896
Diagnosis and eTree ApplicationProposed Non-AE012346934743Total543477947896
eTree Application Total 5 43 47 794 7 896
Aimaa Agreement 100% 72% 28% 87% 83%


	Target	San Diego- UCSD FASD	San Diego- CBT	Minneapolis	Total
Number of Subjects	# Consented/ Record Created	101	90	81	272
	# Complete in eTree	96	84	32	212
Recruited and	# Partial Record in eTree	5	6	49	60
Enrolled in Tree	# Complete NP Validation	9	4	76	170
Study Aimsablac					

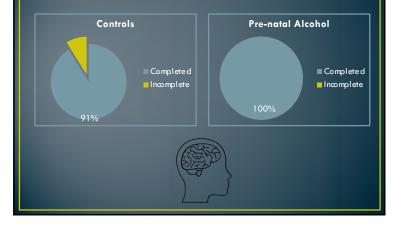




	Site	Existing or New	Type of Sample
ply the	UCSD FASD Clinic	Existing (active)	Hospital-based clinic
gorithm to	SDSU Center for Behavioral Teratology	Existing (active)	Research-based clinic
lditional	University of Minnesota	Existing (active)	Hospital-based clinic
isting	CIFASD Ukraine		Research study
Itasets Iement Aim 1	UCSD Developmental Behavioral Pediatrics Clinic	Existing (pending)	Hospital-based clinic
	CoFASP (Chambers)	Existing (archival)	Prevalence study
	CoFASP (May)	Requested	Prevalence study
	CanFASD	Proposed	Nationwide clinic- based database

Develop Classification Algorithms Using Machine Learning to Enhance the

- Goal: to refine existing eTree algorithm
- Trained support vector machines using existing (Phase 2 and 3) CIFASD data
- Feature sets: facial measurements, IQ, and parent survey data
- Overall classification accuracy of 77%
- To improve our accuracy
 - Retraining the model with a more balanced dataset • Exploring Random Forest techniques

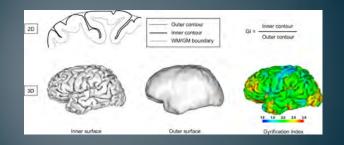


Ap

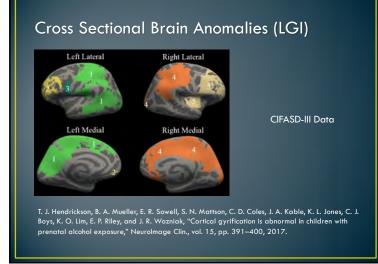
Ad

Phase 1: Baseline MRI and neurocognitive assessment (as of October 2019)

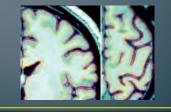
Phase | Progress


- Target: recruit groups of 45 (PAE) and 45 (control)
 During the first 3 years
- Age range: 10 16 years old
- All will receive dysmorphology
- MRI scan
- 3-hour neurocognitive / behavioral session testing
 Including Dr. Mattson's short, digital battery (iPads)
- 15 month interval
- Second MRI scan

Phase 2: 15-month follow-up MRI


- Returning on a rolling basis (2019-2022)
- Controls = 13 of 45 completed
- Prenatal alcohol = 8 of 45 completed
- Projections indicate completion in approx. 15-18 months
- Jones dysmorphology (in batches)
- 40 completed thus far
- 35-40 additional expected during October 11-12 visit from Dr. Jones

Cortical gyrification

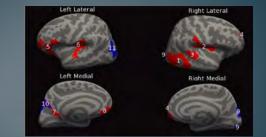
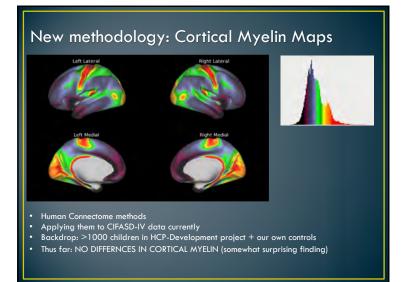

Quantification of cortical smoothness / gyrification reveals underdevelopment in FASD

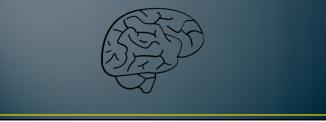
<figure><figure><figure><figure>

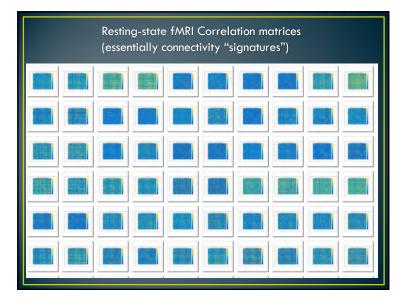
Cortical Thickness (mixed picture) • Increased cortical thickness in FASD (Sowell et al. 2008, Fernandez-Jaen et al, 2011, Treit et al, 2014)

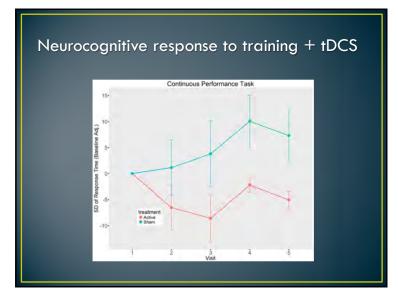
- Decreased cortical thickness in FASD (Robertson et al, 2016, perhaps; Zhou et al, 2011)
- Differential trajectory of cortical thickness in FASD
 Normally peaks at 8 or 9 years of age (delayed)

Longitudinal cortical thickness (CIFASD-III) (flattening in the curve during older adolescence

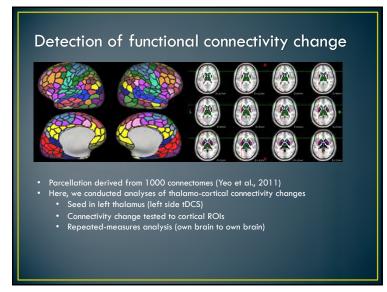

Fig. 1. Inflated cortical convolution maps showing clusters after thresholding the uncorrected data and correcting for multiple comparisons, Linear age by patient group interaction effects are shown in red and quadratic age by patient group interaction effects are shown in blue. Locations in which red and blue clusters overlap are shown in purple.

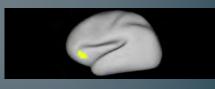

Hendrickson, T.J., Mueller, B.A., Sowell, E.R., Mattson, S.N., Coles, C.D., Kable, J.A., Jones, K.L., Boys, C.J., Lee, S., Lim, K.O., Riley, E.P. & Wozniak, J.R. (2018). Two-year cortical trajectories are abnormal in children and adolescents with prenatal alcohol exposure. Developmental Cognitive Neuroscience, 30:123-133



Resting-state analyses

- Developing methodologies currently
- Goals:
- Use connectivity "signature" to separate those impacted by PAE
- Quantify the level of impairment at an individual level
- Longitudinal: relate abnormalities in cortical trajectories to functional changes over time in youth with FASD







Connectivity change in left pre-frontal cortical ROI

- Part of the ventral attentional network (fronto-parietal)
 Involved in shifting attention
- Near significant effects in dorsal attentional network
- Involved in top-down, voluntary control of attention

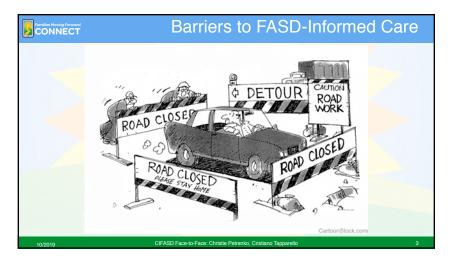
Connectivity change in left pre-frontal cortical ROI

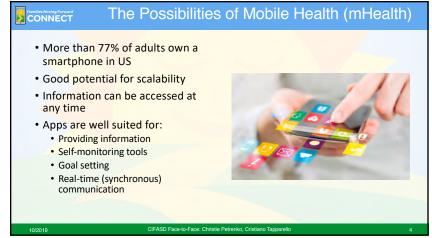
Collaborations

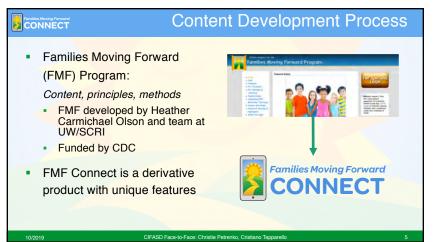
- <u>Mattson collaboration</u>: Neurocognitive data / Decision-tree data: approximately 86 complete or scheduled
- <u>Suttie collaboration:</u> 3D and 2D photos: approximately 86 participants (PAE and controls)
- <u>Foroud/Wetherill collaboration</u>: Saliva: approximately 22 thus far (PAE only); 19 more PAE as of October 12.
- <u>Weinberg collaboration</u>: Blood samples for immune function study: 59 samples from 31 individuals collected

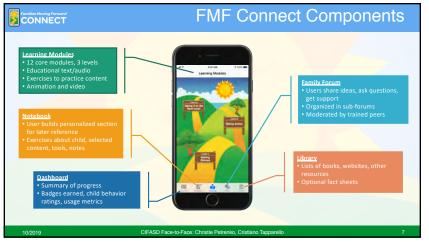
• Manuscripts (since CIFASD-4 began, some using CIFASD-3 data):

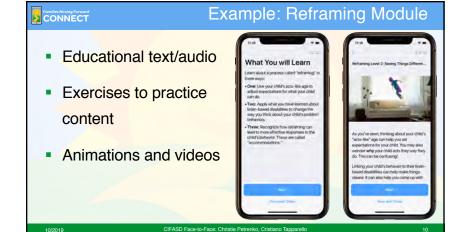
- Contributed to CIFASD-4 Development project (Sarkar): Sarkar, D., Gangisetty, O., Wozniak, J.R., Eckerle, J., Georgieff, M., Foroud, T., Wetherill, L., Wertlecki, W., Chambers, C., Riley, E., Zymak-Kakutnya, N., Yevtushok, L. (2019). Persistent changes in stress-regulatory genes in pregnant woman or a child with prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research. DOI: 10.1111/acer.14148.
- Important review by CIFASD investigators: Wozniak, J.R., Riley, E.P., & Charness, M.E. (2019). Clinical Presentation, Diagnosis, and Management of Fetal Alcohol Spectrum Disorder. The Lancet-Neurology,S1474-4422(19)30150-4. PMID: 31160204. Impact Factor: 27.14;
- CIFASD-3 data: Hendrickson, T.J., Mueller, B.A., Sowell, E.R., Mattson, S.N., Coles, C.D., Kable, J.A., Jones, K.L., Boys, C.J., Lee, S., Lim, K.O., Riley, E.P., & Wozniak, J.R. (2018). Two-year cortical trajectories are abnormal in children and adolescents with prenatal alcohol exposure. *Developmental Cognitive Neuroscience*, 30:123-133; DOI: 10.1016/j.dcn.2018.02.008.
- CIFASD-3 data: Hendrickson, T.J., Mueller B.A., Sowell, E.R., Mattson, S.N., Coles, C.D., Kable, J.A., Jones, K.L., Boys, C.J., Lim, K.O., Riley, E.P., & Wozniak, J.R. (2017). Cortical gyrification is abnormal in children with Prenatal Alcohol Exposure. *Neuroimage: Clinical.* 15, 391-400; doi.org/10.1016.j.nicl.2017.05.015

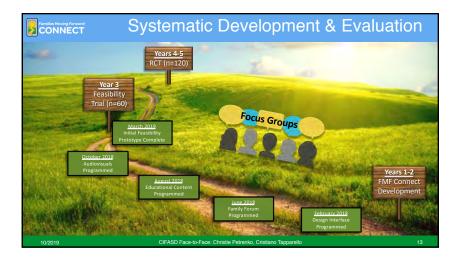

- Under review CIFASD-3 data: Uban, K.A., Kan, E., Wozniak, J.R., Mattson, S.N., Coles, C., & Sowell, E.R. (under review). The relationship between socioeconomic status and brain volume is attenuated in children and adolescents with prenatal alcohol exposure. Frontiers in Human Neuroscience;
- Manuscripts in preparation:
 - Subcortical volumetrics and internalizing symptoms (Krueger et al.)
- * Hippocampal sub-field analyses and memory disturbances in FASD (Roediger et al)
- Cortical myelin status in FASD (Roediger et al.)

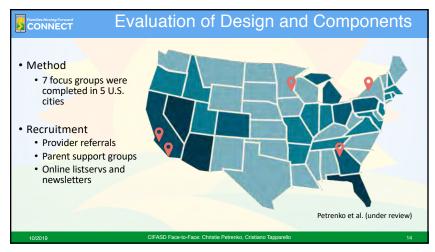

Thanks

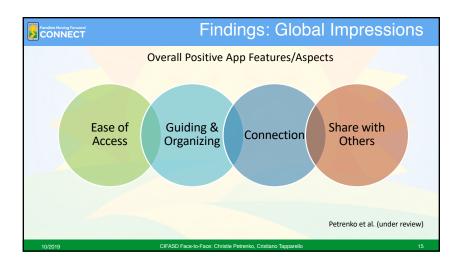

- * UMN: Alyssa Krueger, Mariah Schumacher, Tim Hendrickson, Donovan Roediger, Bryon Mueller, Kelvin Lim, Judith K. Eckerle, Christopher J. Boys
- CIFASD investigators: Elizabeth Sowell, Sarah Mattson, Claire Coles, Julie Kable, Ken Jones, Kristina Uban, Eric Kan, Helen Yezerets, Bill Barnett
- Proof Alliance (formerly Minnesota Organization on FAS or MOFAS)
- NIAAA for support and funding

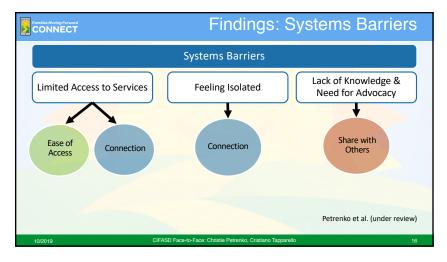


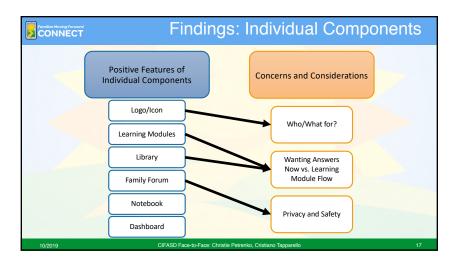


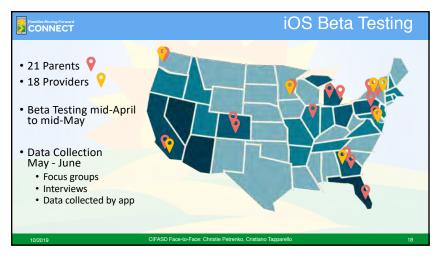

nts	families Moving Forward CONNECT	Dashboard
stions, rs er	 User profile information Family Forum interactions Summary of progress with learning modules Quick access to daily ratings, child behavior tracking, and usage metrics 	Image: State Stat
7	10/2019 CIFASD Face-to-Face: Christie Petrenko, Cristiano Tapparello	8

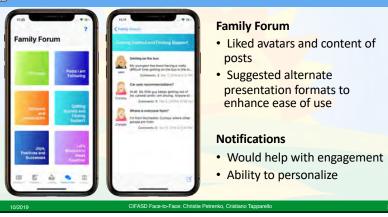


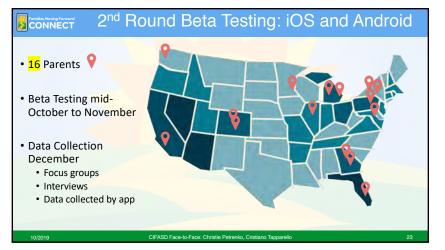


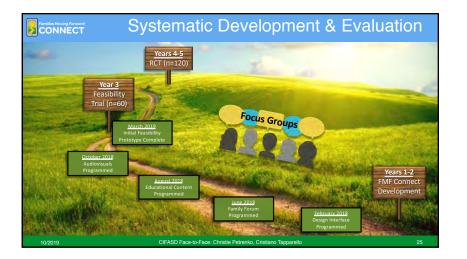




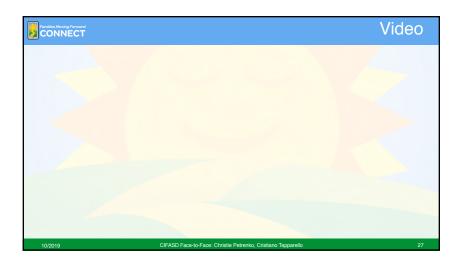



App Distribution & Usability 32 out of 39 testers installed and used the app Test on a wide range of iOS devices Ability to track bugs/crashes in real time Released 3 updates to fix bugs and expand functionalities Collected analytics to evaluate level of engagement to different app components Ways to make the app more engaging and ideas for future refinements

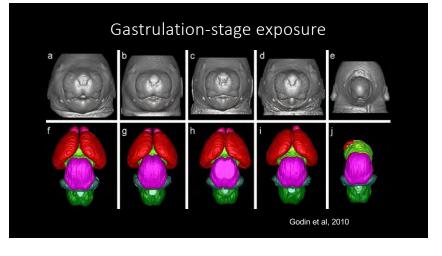

CIFASD Face-to-Face: Christie Petrenko, Cristiano Tap

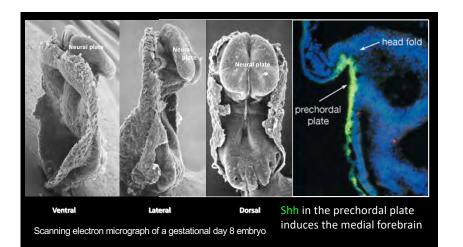


B CONNECT Themes from Focus Groups & Interviews

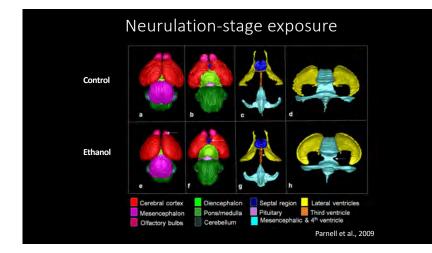


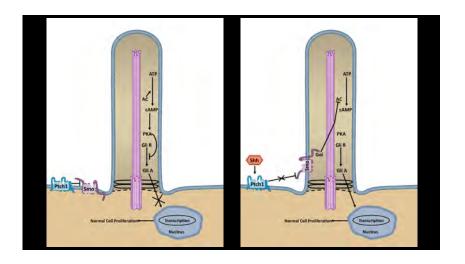
ľ	Received recruitment and logistical sur (Mattson, Wozniak, Foroud, Coles, Jor	
÷	Coordinating with Foroud to develop vi Webportal for Aims 2 & 3	ideo consenting process in
	Assisting with recruitment for Foroud, S	Suttie, and Riley projects
÷	Planned intervention trials may increas in other human projects	se interest and engagement

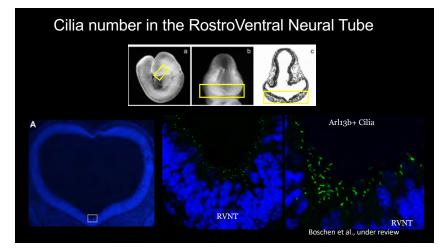


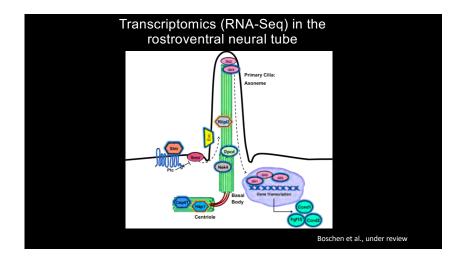

Exploring the Genetics of FASD in Complementary Mouse and Fish Models

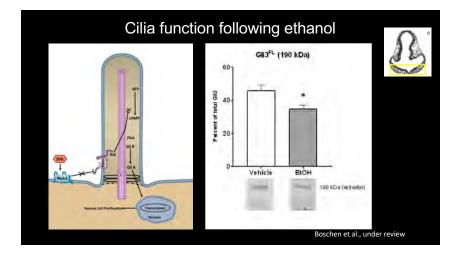
Scott E. Parnell/Johann K. Eberhart University of North Carolina University of Texas at Austin









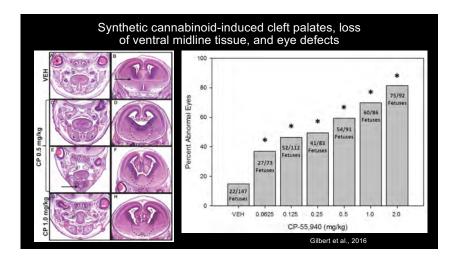


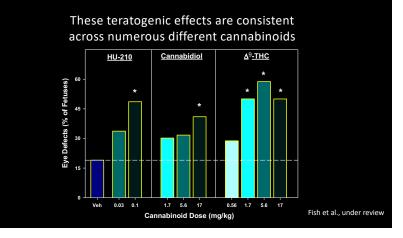
Primary cilia receive signals, including Shh, from outside the cell

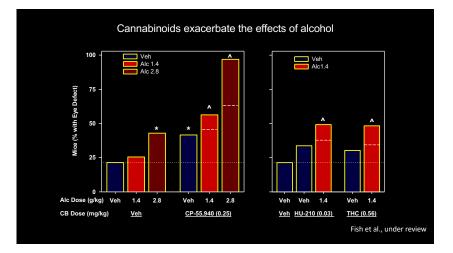
R01 AA026068, Parnell (PI) 12/15/18-11/30/23 NIH/NIAAA *Cellular Mechanisms in Fetal Alcohol Spectrum Disorders* Role: PI

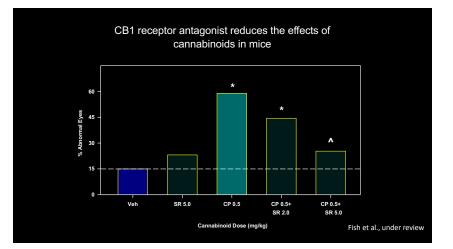
Synthetic cannabinoid-induced craniofacial malformations

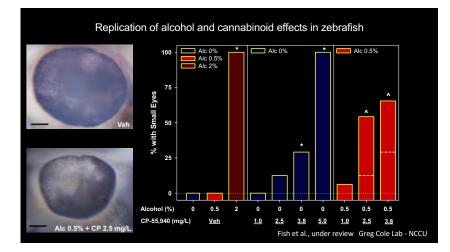
Midfacial Hypoplasia

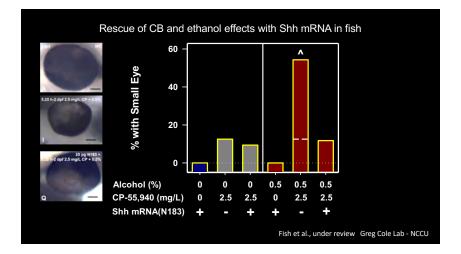


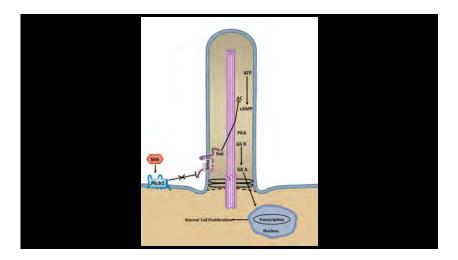


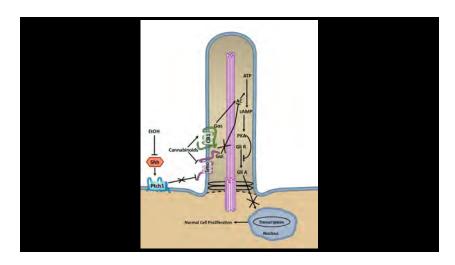

Control


Micrognathia

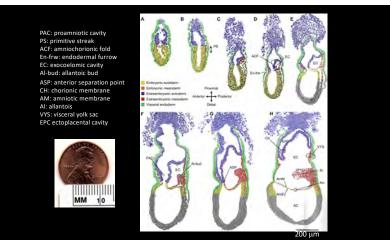

Gilbert et al., 2016







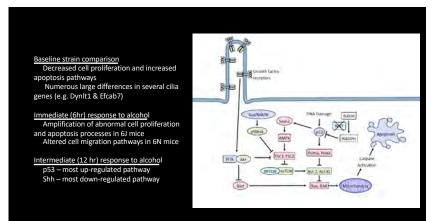
R21 AA025400, Cole (PI-NCCU) NIH/NIAAA

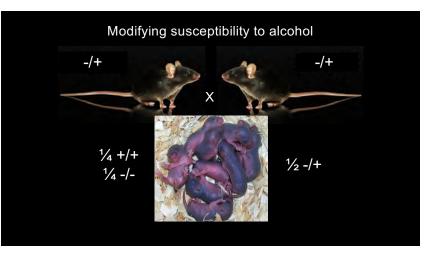

09/15/18-09/30/20

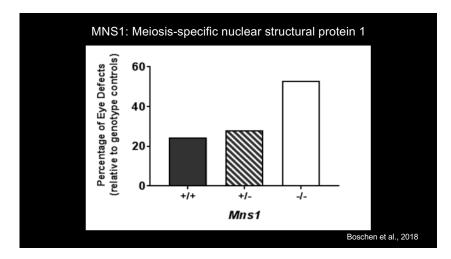
Gene-ethanol Interactions in a Zebrafish Multi-binge FASD Model Role: Co-PI

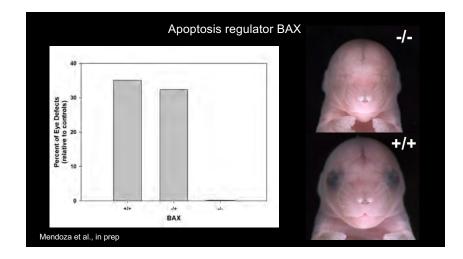
R03 AA026996, Besheer/Parnell (Multi-Pls) 08/15/18-07/31/20 NIH/NIAAA

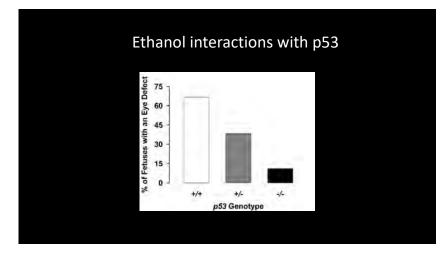
Consequences of Prenatal Alcohol and Cannabinoid Co-exposure on Alcohol Self-Administration in Adolescence Role: Pl

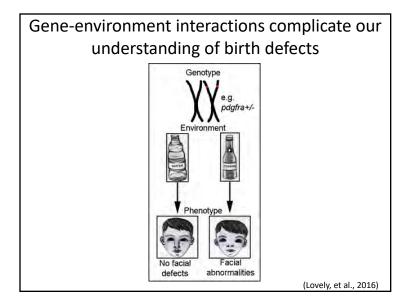


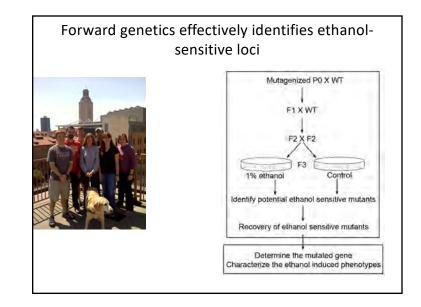

Strain-specific responses to ethanol

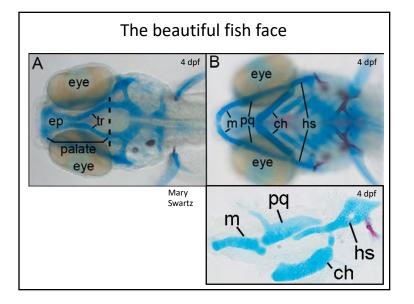

C57BL/6J (susceptible): Nearly twice as many genes altered by ethanol exposure Numerous canonical pathways: "Neuroimmune" signaling

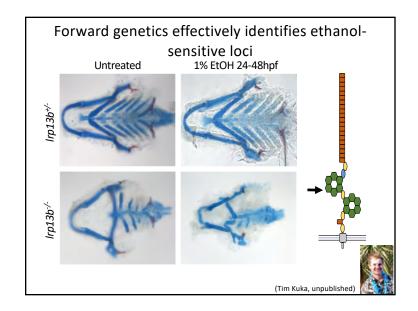

Primary ciliogenesis Apoptosis

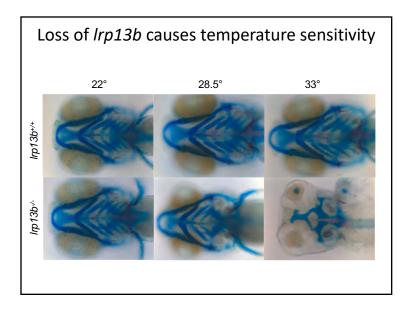

C57BL/6N (resistant): Fewer genes differentially regulated by ethanol No canonical pathways meet criteria

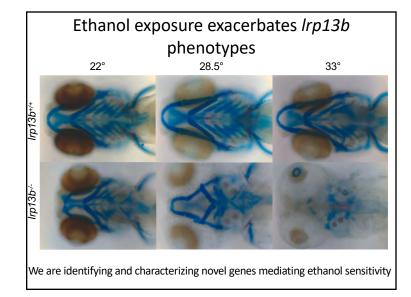


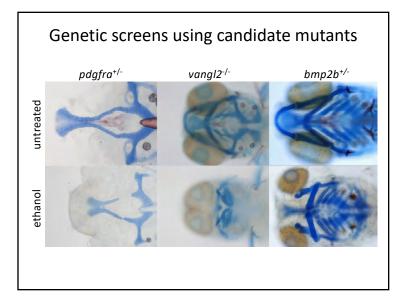


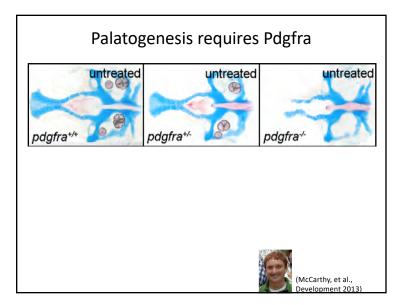


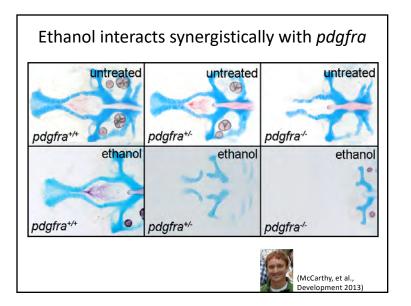


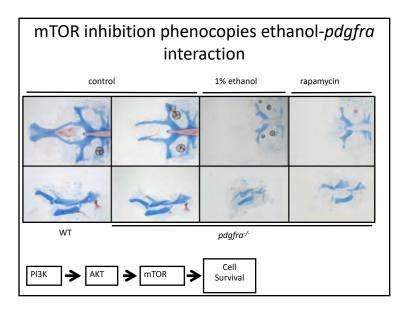


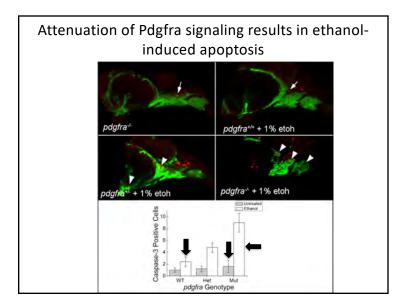


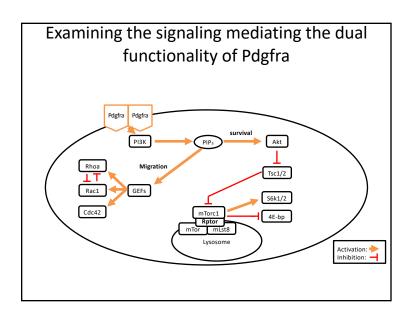


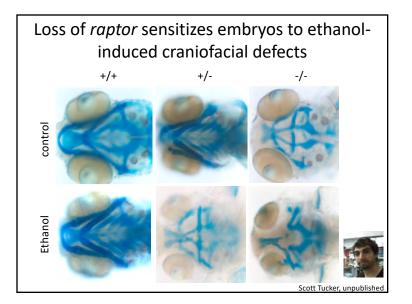


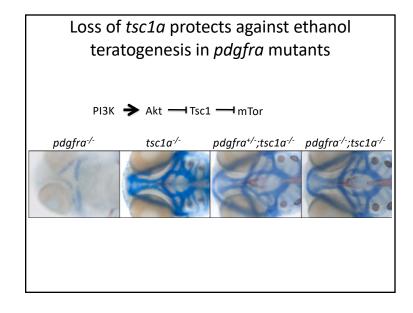


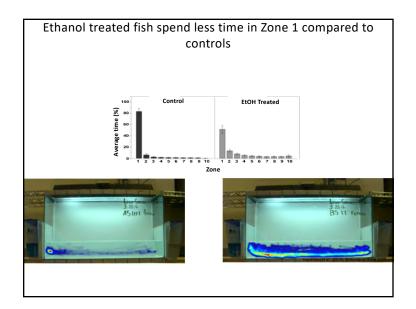


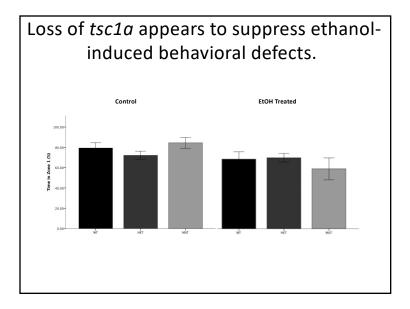


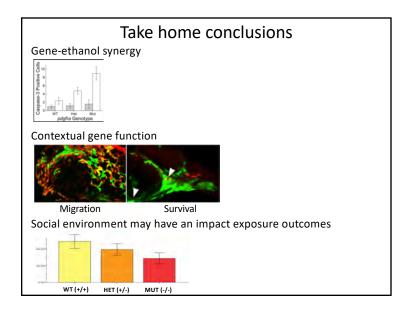












Fetal Alcohol Spectrum Disorders in

Adults: Health and Neurobehavior

NIH/NIAAA #: U01AA026108

Claire D.Coles, PHD Emory University School of Medicine

> Therese Grant, PHD University of Washington

> > Investigators Atlanta:

Investigators

Investigators:

Vancouver:

The problem:

- Despite the prevalence of FASD and its life-long course, there is no empirical research about adult health, physical characteristics, neurobehavior or adaptive functioning in Middle Adulthood.
- The Developmental Origins of Health and Disease (DOHoD) hypothesis suggests that fetal programming by PAE should result in vulnerable organisms with increased sensitivity to stress, adverse health and functional outcomes.

The Study

- Multisite Collaborative Study (part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD4), initiated in 2017.
- Sites include Atlanta, GA and Seattle, WA, with a parallel study in Vancouver, BC
- Two "Tier" Assessment
 - Tier 1. Demographic and Health Survey
 - Tier 2. In-Depth Assessment of medical records, physical characteristics, immune function, mental health, cognitive functioning, social/adaptive functioning

• Tier 1

Adult Health Survey (N=500) of access to health care, chronic medical problems in midlife, ages 25-45.

(Another 120 will be tested in Vancouver using the same form.)

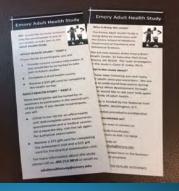
Health Issues assessed:

- Access to health care
- Sleep Vision/Hearing/Dental
- Allergies and Asthma
- Cardiovascular
- GI
- Diabetes
- Autoimmune disorders Arthritis
- Seizures
- Depression/Anxiety
- Other Medical problems
- Adverse Childhood Experiences

Questionnaire Development

Structured using the CDC Behavioral Risk Factor Surveillance System Questionnaire (BRFSS) as a model.

- 1. Selected from Existing BRFSS modules (in public domain).
- 2. Added modules on Seizures from
- Neurological Questionnaire. 3. Created modules on
- vision, hearing and dental health. 4. Created modules on
- Gastrointestinal and Immunology.


Recruitment

• Using existing databases, identify participants in longitudinal research study.

• Using Accuinet and Trans-Union, locate participants. This requires name, date of birth, previous addresses and phone numbers, email addresses, Social Security numbers, names of relatives, etc

To Date: 174 participants have completed . Tier 1 (34.8%).

· Using location information, write, call, email

participants and recruit for the study:

Data is "Automatically" entered into relational database.

- Creates databases that can be exported to other systems
- · Creates data dictionary as forms are made.
- HIPAA compliant
- Multisite access
- Audit trails Reports easily created

• This is an in-depth assessment of the Adults' current status. There are several areas assessed:

- Physical Characteristics
- Psychological factors
- Environmental
- Substance Use
- Health, including Immune Function Medical records

TIER 2 Assessment • Our goal is 120 individuals at each site (240 total) invited to complete this comprehensive assessment. At the study site, they spend about 4 hours being evaluated and completing questionnaires.

- We draw blood and take urine samples to confirm substance use reports and to allow assessment of metabolic status (A1C), liver function (GGT) and immune status.
- Blood samples are sent to Vancouver' for cytokine analysis.

To date, 83 participants have completed Tier 2 (34.6%).

Tier 2: In Depth Assessment

Psychological Measures

Physical assessment

- Cognitive Functioning- "fluid intelligence"
- Adaptive Functioning
- Psychiatric Problems
- Substance Use
- Life Stressors and Resources (Moos)

- Dysmorphology assessment
- 2-D Photography taken on site • Urine Toxicology for 7 drugs
- GGT
- A1C
- Immune Measures Health History

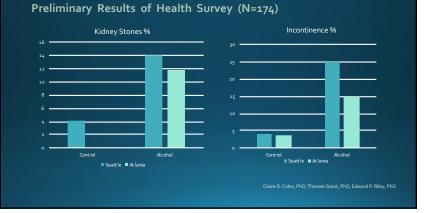
In collaboration with Dr. Jones for dysmorphology, Dr. Suttie for digital imaging, and Dr.

CIFASD4 Presentation Drafts

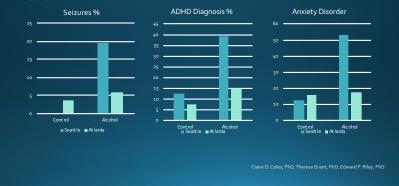
Preliminary Results From Recruitment:


- Mortality-In Seattle longitudinal sample (N=630), 5.23% of Alcohol exposed longitudinal sample had died (Mean age: 36.8 yrs) vs 1.67% in controls (35 years). Cause of death: Cardiac:27.8%; Cancer:16.7%; kidney: 5.6%, diabetes: 5.6%; substance abuse: 16.7%; accidents:11.1%; Suicide: 5.6%, Violence: 5.6%. The single death in the control group was due to cancer.
- Incarceration: In Atlanta (N=450), 10 males were in federal prison, 50% FASD and 50% Controls. A number of other had been arrested for lesser offenses and were released. In Seattle, 3 males in FASD group were incarcerated.
- Medical problems: In Atlanta, 63% of Tier 2 participants (19/30) have been referred for medical care following test results.

Note: It is very early in the process and we do not have sufficient "N" to control for demographic factors.


Preliminary Results of Health Survey (N=174)-Demographics

Characteristic	Sample Total (N=116)
Age	36.86 yrs, (Range 30-70 Yrs)
Gender	M=37.5%; F=62.3%
Race* *93.7% Non Hispanic	W=45.3% ; A-A=35.2%; Native=9.4%; Mixed=10.1%
Education	HS:23.9%; Col/Tech: 42.7%; Grad:11.2%
Marital Status	With partner: 37.1%; Never Married: 50.3%; Separated/Divorced: 10.1%
M # Children	2.41 (1.47 SD) (Range: 0-8)
Employment	FT: 50.3%; PT: 27.7%; Not working: 22% (Disabled: 11.3%)
Income	More than \$4000/mo: 22.6%


Preliminary Results of Health Survey (N=174)-Health Care

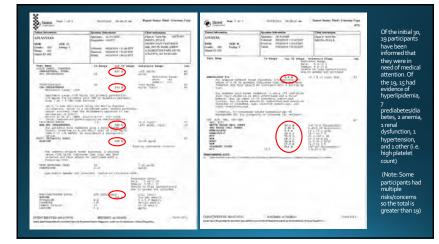
Preliminary Results of Health Survey (N=174)-Physical Weight in Pounds Height in Inches Griter Corter Scossistent with diagnostic characteristics, Acohol group is shorter and weighs less.

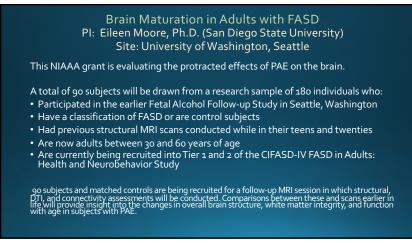
Preliminary Results of Health Survey (N=174) Neuro/Mental Health



Adverse Childhood Experiences (ACES)

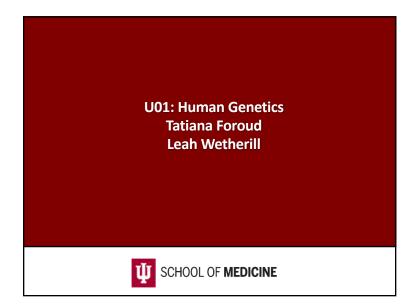
- The A coho group reported sign f cantly higher evels of
 - <u>Foster Care</u> Placement-(58.5% vs 16%)
 - Household member with <u>Mental Health Disorde</u>r-(26.4% vs 16%)
 - Household member with <u>Alcohol Use Disord</u>er-(50% vs 30%)
 - Household member <u>incarcerated</u>-(23.6% vs 6%)
 - Parents separated/divorced-(51.9% vs 38%)
 - <u>Physical Abuse</u> as child-(32.1% vs 8%)
 - Emotional Abuse as child-(36.8% vs 16%)
 - <u>Sexual Abuse</u> as child-(26.4% vs 6%)


Supplemental Proposals


- One of the great advantages to this study was the potential availability of the samples of adults for other studies. Currently, we have the following "additional" studies:
- 1. Atlanta: Cardiovascular function and neurovascularization (Kable, PI).
- 2. Seattle: Longitudinal Neuroimaging (Moore, PI).

FNIRS During Frustration Emotion Task for Adults (FETA) and a Go-No-Go Task

CIFASD 4 Makes the study possible


 Collaboration with Dr. Weinberg's team in Vancouver allows assessment of immune functioning in adults.

- Vancouver study is carrying out parallel protocol to increase N of adults evaluated.
- Dysmorphology core under Dr. Jones's direction is evaluating adults.
- 2-D Photographs are being analyzed by Dr. Suttie.
- Informatics Core in Indianapolis acts as a repository of study data.
- Administrative Core directed by Dr. Riley, coordinates and supports activities.

Translation Potential. Or what is the clinical usefulness of all this?

- Preliminary outcomes suggest PAE is associated with increased mortality and morbidity in middle adulthood.
- Early results suggest that exposed individuals are at risk for cardiovascular disorders, metabolic syndrome, seizures and other medical conditions that should be considered in their future clinical care. Physicians should be alert for the possibility of early onset of these conditions.
- Alcohol-Exposed individuals also appear to have increased risk for Adverse Childhood Experiences (ACES) that place them at risk for both medical problems and emotional disorders later in life.
- These findings have significant implications both for the clinical care of
 exposed individuals and for public health planning.

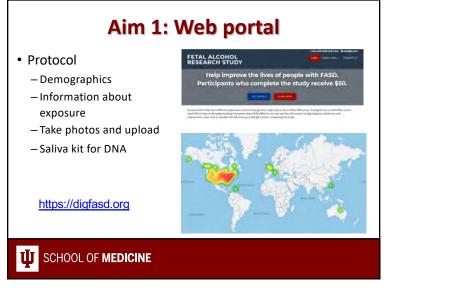
Background

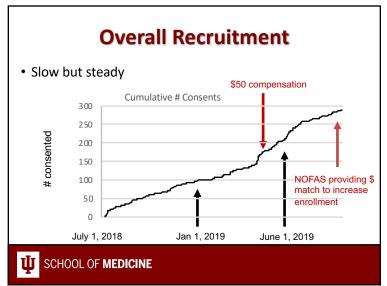
- Individuals exposed to similar quantities/frequencies of alcohol prenatally have variable outcomes
- What other factors contribute to variable outcomes
- Genetics is certainly one of these factors

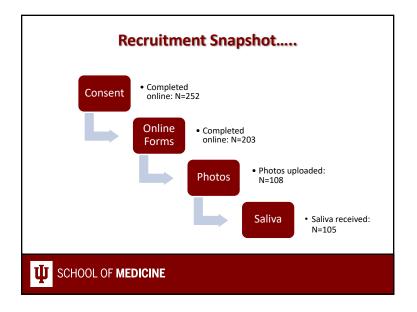
 Few studies have been designed to formally test for these factors

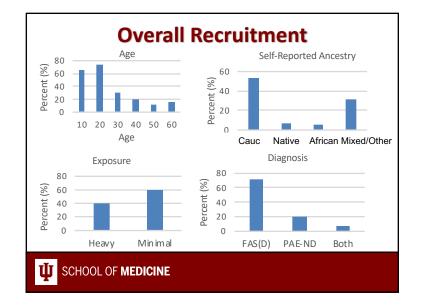
U SCHOOL OF MEDICINE

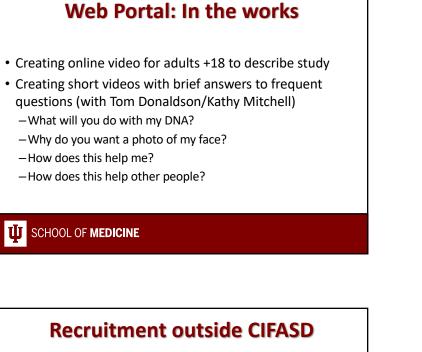
Importance of Sample Size

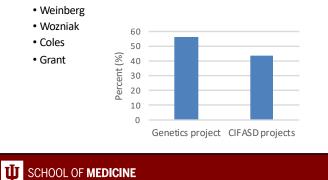

- Given the variability in FASD, it is essential to recruit large numbers of individuals for genetic studies
 - -Challenging to do this across study sites
 - This project seeks to recruit via social media and enroll participants through an online consent and protocol


U SCHOOL OF MEDICINE


Aims


- Develop a web portal with a novel, online consenting process to create a large CIFASD cohort of individuals with prenatal alcohol exposure for new studies.
- Perform whole exome sequencing in a targeted set of the newly recruited online CIFASD cohort to compare individuals with (1) high probability of FAS/FASD features to (2) low probability.


U SCHOOL OF MEDICINE

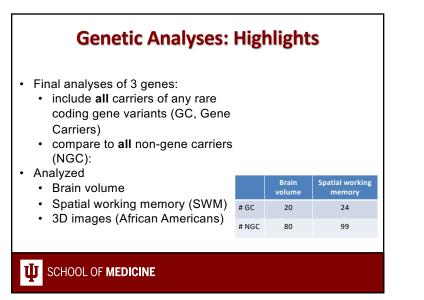


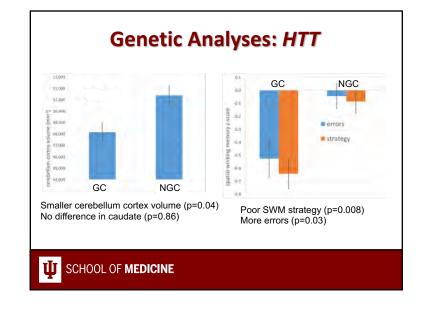
- Recruit in Genetics Clinics at Indiana University
- Working on reliance agreement with Kathy Keiver, Alison Orr (Canada)
- Working closely with clinicians, organizations around the country
 - Several contacts in Anchorage and Governor's Council of Alaska
 - Nebraska, Dakotas, Florida
 - Neurobehavioral clinics
 - Grass-roots organizations
- Invited presentation at the American Academy of Child & Adolescent Psychiatry meeting (Chicago, 2019)
- Registered at clinicaltrials.gov

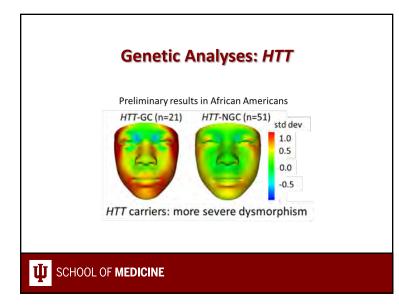
J SCHOOL OF MEDICINE

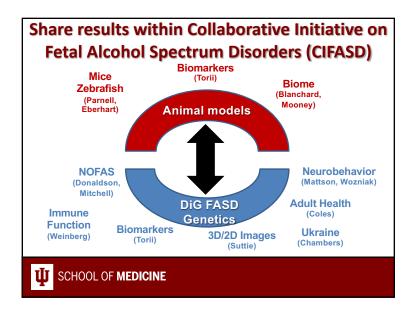
Recruitment within CIFASD

- Reliance agreement with Petrenko
- CIFASD projects collecting saliva:


Aim 2: Genetic Analyses


- Utilized 273 DNA samples from previous phases for whole exome sequencing (WES)
- Preliminary sample used 154 (African Americans + European Americans)
- All individuals had prenatal alcohol exposure


 (1) Initial: compared FAS to no FAS (no features of FAS)
 (2) Identified 3 genes: HTT, KIF2A, CRIPAK



U SCHOOL OF MEDICINE

Future Directions

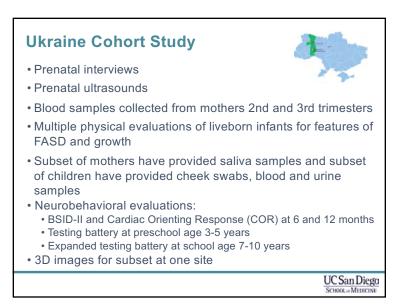
- Current findings
 - Htt heterozygote mice have been ordered
 - -Zebrafish morpholinos
 - Replication in Chambers
 - $-\operatorname{Reviewing}$ saliva samples from DiG FASD online study for WES
- Inform other CIFASD studies
 - Biomarkers (Torii)
 - Immune function (Weinberg)
 - Biome (Blanchard/Mooney)

U SCHOOL OF MEDICINE

Translation Potential

- Understanding genetic risk and resilience can help inform treatments and interventions
- Understanding genes and mechanism of action of alcohol
 - On the face and brain can help inform treatments
 - On neurobehavioral deficits can help improve interventions
- Future analyses of behavioral traits can improve understanding
 - Those with FASD do not respond to ADHD medication
 - High comorbidity with conduct disorder, oppositional defiant disorder

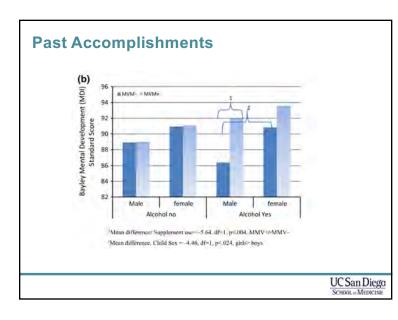
U SCHOOL OF MEDICINE



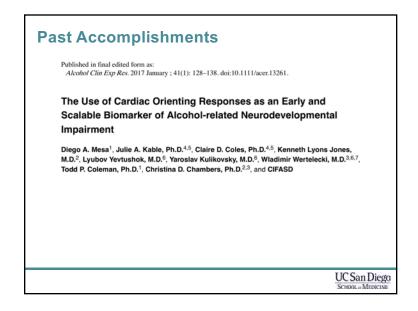
Ukraine Cohort Study

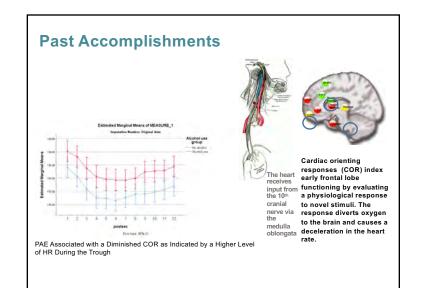
- Prospective pregnancy cohort, 2004-2022
- Collaboration with Omni-Net Centers in Ukraine
- ~1,200 participants recruited from screened population at Rivne Regional Medical Diagnostic Center and the Khmelnytsky Perinatal Center
- Moderate to heavily exposed women in early pregnancy and low/unexposed women enrolled 1:1 ratio

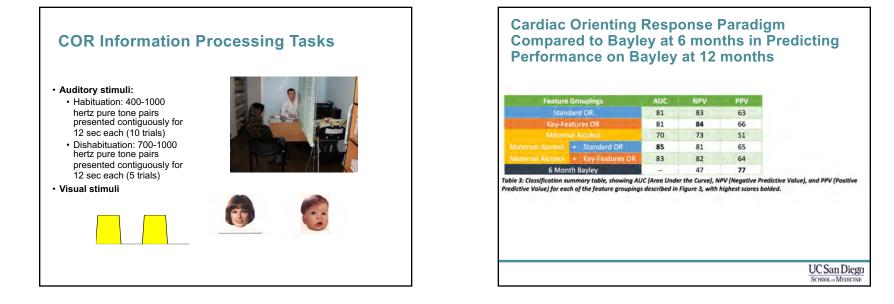
UC San Diego SCHOOL & MEDICINE

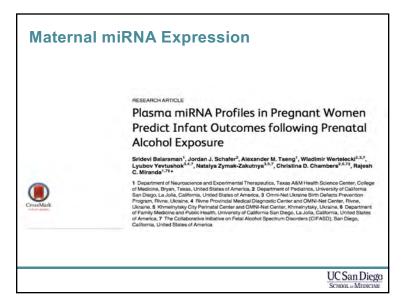

Past Accomplishments

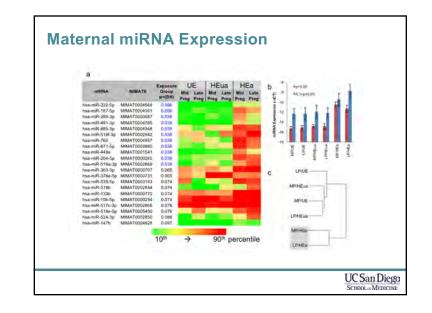

Published in final edited form as: Alcohol Clin Exp Res. 2014 April; 38(4): 1012–1019.

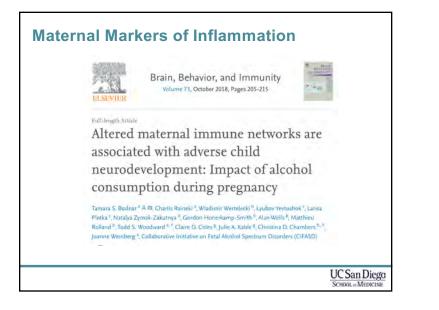

Prevalence and Predictors of Maternal Alcohol Consumption in Two Regions of Ukraine

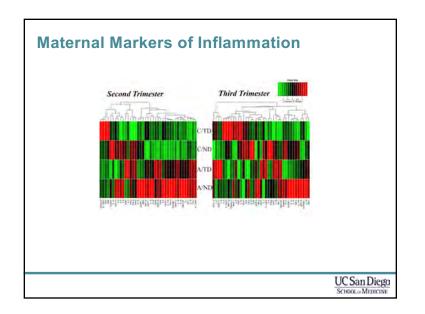

Christina D. Chambers, PhD, MPH^{1,2}, Lyubov Yevtushok, MD³, Natalya Zymak-Zakutnya, MD⁴, Yuriy Korzhynskyy, MD⁵, Lyubov Ostapchuk³, Diana Akhmedzhanova⁴, Priscilla H. Chan, MS¹, Ronghui Xu, PhD², and Wladimir Wertelecki, MD⁶


UC San Diego



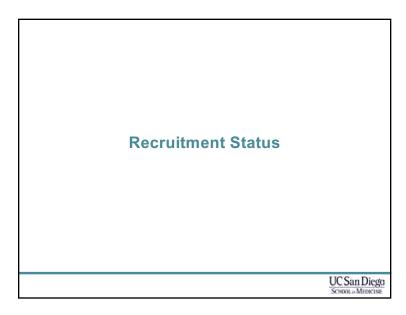






CIFASD4 Presentation Drafts

CIFASD4 Aims Early Predictors of FASD in Ukraine


Develop a panel of prenatal/infancy physiologic and biologic markers that can predict FASD using existing data and 200 newly enrolled pregnant women/infants

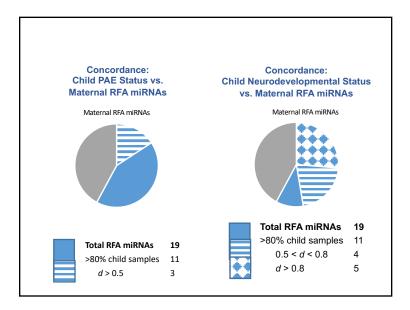
- miRNAs
- COR paradigm
- Cytokines

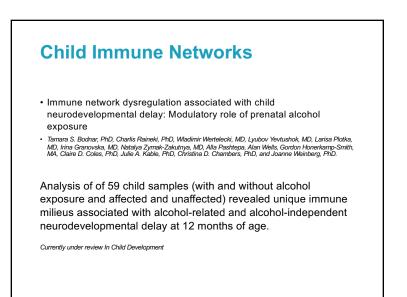
CIFASD4 Aims Early Predictors of FASD in Ukraine

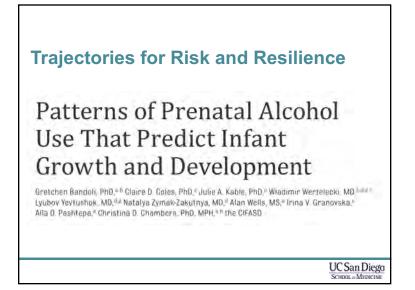
Develop risk/resilience profiles based on early markers and other factors that will adequately predict preschool and school age performance using existing data and 200 newly enrolled pregnant women/infants

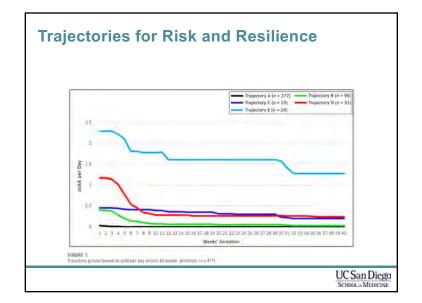
- Growth, social, environmental, economic, health, & other available data in base models
- Add early physiology/biomarkers to profiles
- Test prediction model to extent possible in CIFASD2 and 3 retrospective samples

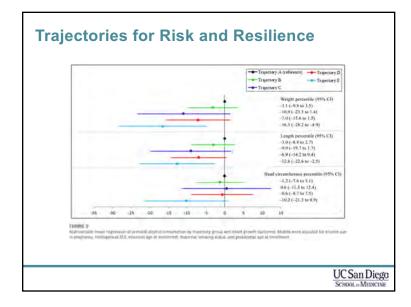
Group	N Recruited	N Required	Percent of Total	Completion Date Projected
New Pregnant Women Exposed	56	120	47%	June 2021
New Pregnant Women Unexposed	44	80	55%	June 2021
NB Testing School Age Exposed	35	80	44%	June 2021
NB Testing School Age Unexposed	47	70	67%	June 2021
NB Testing 6 Months Exposed	9	60	15%	January 2022
NB Testing 6 Months Unexposed	9	40	23%	January 2022
NB Testing 12 Months Exposed	1	60	3%	June 2022
NB Testing 12 Months Unexposed	0	40	0	June 2022
Blood Samples Infant Exposed	1	80	1%	June 2022
Blood Samples Infant Unexposed	1	60	1%	June 2022
Blood Samples School Age Exposed	22	40	55%	June 2021
Blood Samples School Age Unexposed	25	30	83%	June 2021
Ultrasound Exposed	62	120	52%	June 2021
Ultrasound Unexposed	56	80	70%	June 2021
3D image Exposed	18	35	51%	June 2022
3D Image Unexposed	16	30	53%	June 2022

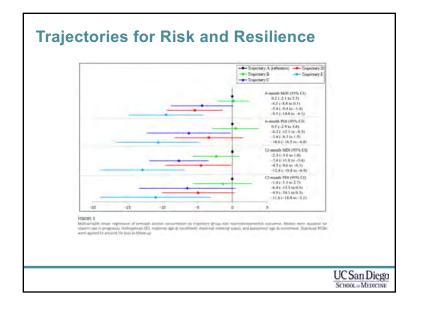

- Collected from children 2-3.5 years old
- Qiagen miRCURY LNA miRNome panel v5 • 752 Unique miRNAs


• 164 miRNAs in >80% of samples


Child miRNA Expression

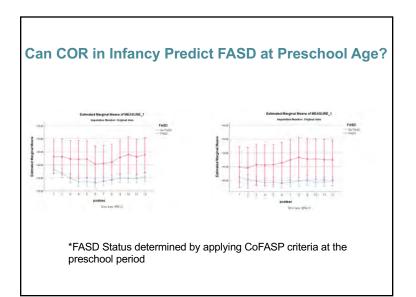

- · Compared concordant expression in child miRNAs to maternal miRNAs previously identified in Random Forest Analysis as most informative for differentiating heavily exposed mothers from those with low or no exposure
- Examined concordance by PAE and concordance by neurodevelopmental delay at 12 months

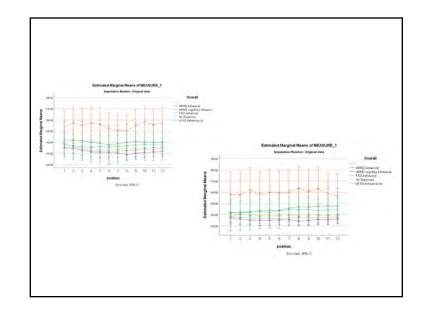

	Normal Neuro	Low Neuro	Unknown Neuro
Ethanol Exposed	9	21	1
Ethanol Unexposed	11	15	



Trajectories for Risk and Resilience

- Individual growth curves for subset of 441 singleton infants combined with clinical variables screened for contribution to improvement in prediction of scores on the BSID II at 12 months of age
- Explained variation for continuous MDI (37%) and PDI (33%) at 12 months of age

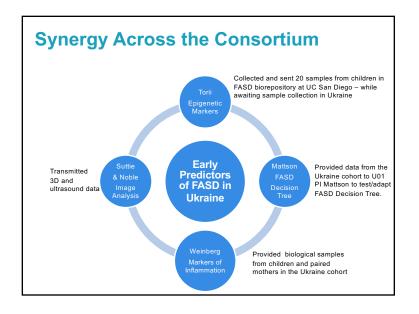

Trajectories Now Being Applied to Preschool Age FASD Classification


FASD Classification	Alcohol Exposed N = 115	Alcohol Low or Unexposed N = 175
FAS – n (%)	5 (4.3)	0
pFAS – n (%)	7 (6.0)	3 (1.7)
ARND – n (%)	47 (40.9)	0
Total FASD – n (%)	59 (51.2)	3 (1.7)
Classified by Hoyme et al 2016, Pediatrics cri	UC San Diego School of Medicine	

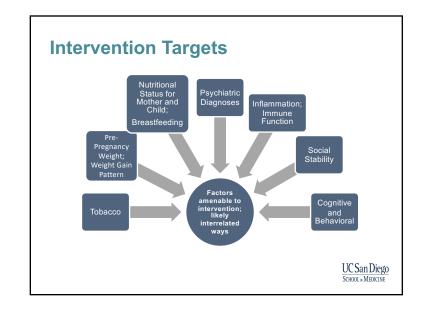
Translation of COR to a Clinically Useful Screening Tool

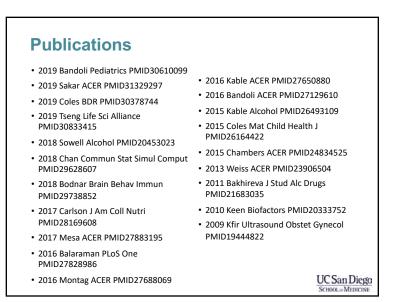
- Adapted so stimuli and data collection can be done wirelessly with an iPad and small butterfly sensor
- Standard car seat for positioning
- Immediate feedback regarding the response instead of elaborate processing historically needed
- Developing best algorithm for predicting normal/abnormal "score" using machine learning techniques

fNIR/fNIRS: Functional Near-Infrared Spectroscopy in School-Age Children in Ukraine



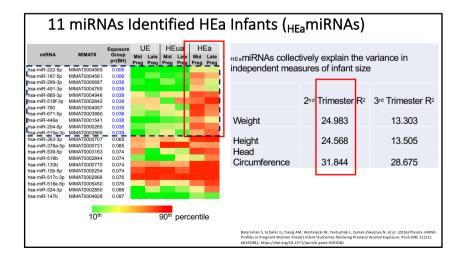
Measures blood oxygenation level changes, specifically oxygenated (HBO) and deoxygenated hemoglobin (HBR)

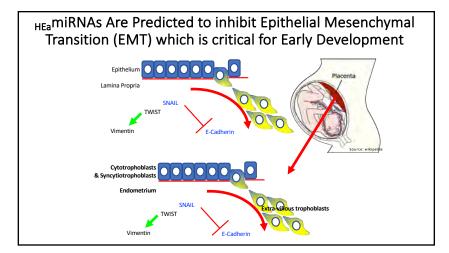




- Demonstrated benefit at least in short term of standard prenatal multivitamin/mineral supplements even if started after recognition of pregnancy
- Drinking trajectories relative to growth and developmental outcomes can inform maternal counseling
- Risk/resilience prediction models incorporating prenatal to school age data appear promising for guiding pediatric care
- Biomarkers of exposure and effect demonstrated previously in mothers emerging as relevant biomarkers in children
- COR as a low-cost, easily administered screening tool in infancy shows promise for early identification of infants at high risk of future performance deficits

UC San Diego

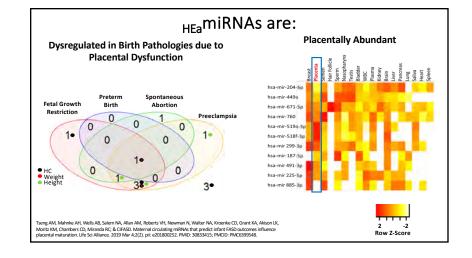


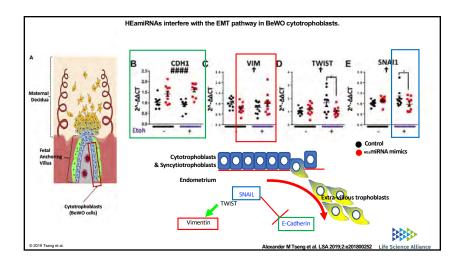

Rationale

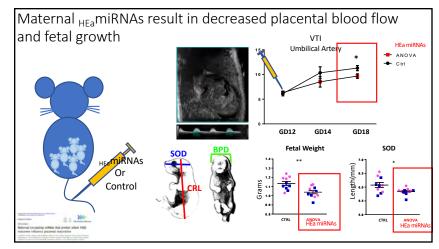
- Prenatal alcohol exposure (PAE) is common
 - ~8.4% of Texas newborn infants had evidence of PAE (Bakhireva et al, ACER 2017, 41(5):1004-1011).
- PAE is difficult to prevent
 - Unplanned pregnancies, AUDs, psychosocial factors etc.....
- FASDs are difficult to diagnose
 - A majority of assessed children in a Texas foster-care cohort had signs of FASD but lacked a diagnosis (Bakhireva et al Alcohol. 2018; 67:37-43).
- Early diagnosis = Early intervention
 - PAE ≠ FASD

Enabling Research:

- CIFASD2 Pilot project:
 - Balaraman S, Lunde ER, Sawant O, Cudd TA, Washburn SE, Miranda RC. Maternal and neonatal plasma microRNA biomarkers for fetal alcohol exposure in an ovine model. Alcohol Clin Exp Res. 2014 May;38(5):1390-400. PMCID: PMC3999266.
 - Plasma miRNAs are a biomarker for PAE (Prenatal Alcohol Exposure) in both pregnant dams and newborn lambs.
- CIFASD3
 - Balaraman S, Schafer JJ, Tseng AM, Wertelecki W, Yevtushok L, Zymak-Zakutnya N, Chambers CD, Miranda RC. Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. PLoS One. 2016 Nov 9;11(11):e0165081. PMCID: PMC5102408.
 - Maternal plasma miRNAs predict effects of PAE

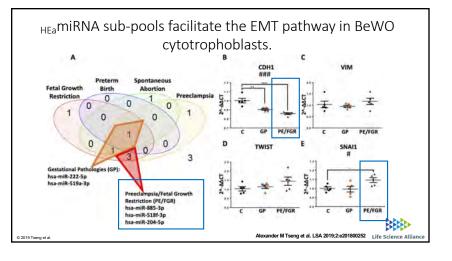



CIFASD4


- Do predictive maternal miRNAs also mediate effects of PAE?
- Does fetal sex contribute to differences in maternal miRNA responses to PAE?
- Is there a persistent imprint of PAE on child plasma miRNA profiles?
- Are child plasma miRNA profiles related to intellectual disability?

CIFASD4

- Do predictive maternal miRNAs also mediate effects of PAE?
- Does fetal sex contribute to differences in maternal miRNA responses to PAE?
- Is there a persistent imprint of PAE on child plasma miRNA profiles?
- Are child plasma miRNA profiles related to intellectual disability?



Major Findings

• HEamiRNAs, Collectively but not individually

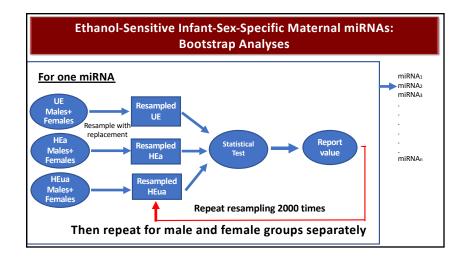
- Inhibit placental trophoblast invasion/epithelial-mesenchymal transition
- Mediate inhibitory effects of PAE in both primate and rodent
- Result in fetal growth restriction

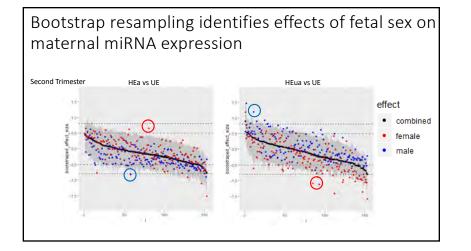
Major Findings

• HEamiRNAs, Collectively but not individually

- Inhibit placental trophoblast invasion/epithelial-mesenchymal transition
- Mediate inhibitory effects of PAE in both primate and rodent
- Result in fetal growth restriction

• HEamiRNA sub-pools may

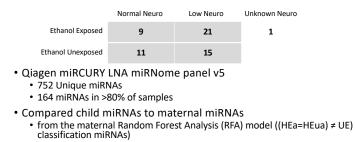

- Facilitate placental EMT
- Offer a route for intervention (PAE ≠ FASD)

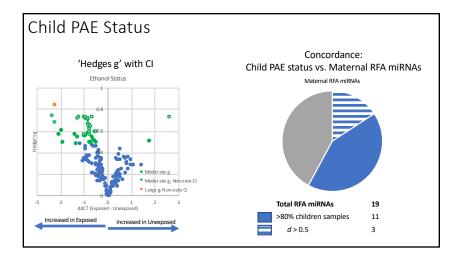

CIFASD4

- Do predictive maternal miRNAs also mediate effects of PAE?
- Does fetal sex contribute to differences in maternal miRNA responses to PAE?
- Is there a persistent imprint of PAE on child plasma miRNA profiles?
- Are child plasma miRNA profiles related to intellectual disability?

Assessing the impact of fetal sex on maternal plasma miRNA profiles

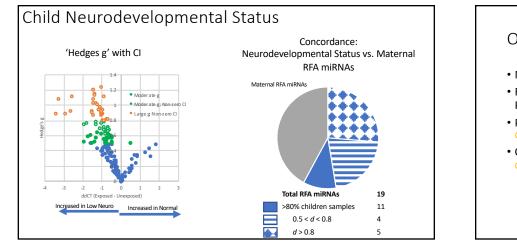
- The placenta is likely to be a source of many maternal miRNAs
- Fetal sex may therefore contribute to maternal plasma miRNA profiles
- The problem:
 - Sample sizes for our studies are limited
 - Disaggregating data by fetal sex results in loss of statistical power
- A Solution:
 - Bootstrap resampling with replacement
 - A statistical tool to approximate population distributions from samples


Take-home message Fetal Sex does influence the maternal plasma miRNA response to PAE Data analysis complete Manuscript concept submitted to CIFASD Manuscript in preparation


CIFASD4

- Do predictive maternal miRNAs also mediate effects of PAE?
- Does fetal sex contribute to differences in maternal miRNA responses to PAE?
- Is there a persistent imprint of PAE on child plasma miRNA profiles?
- Are child plasma miRNA profiles related to intellectual disability?

Sample Summary


- 57 plasma samples completed to date
 - 28 overlap with Weinberg samples, 29 additional samples
- 2-3.5 yo
 - Scored for neurodevelopmental maturation

CIFASD4

- Do predictive maternal miRNAs also mediate effects of PAE?
- Does fetal sex contribute to differences in maternal miRNA responses to PAE?
- Is there a persistent imprint of PAE on child plasma miRNA profiles?
- Are child plasma miRNA profiles related to intellectual disability?

Overall CIFASD4 Progress

- Maternal miRNAs mediate effects of PAE (published)
- Fetal sex contributes to differences in maternal miRNA responses to PAE (analysis completed, manuscript in preparation)
- Persistent imprint of PAE on child plasma miRNA profiles? (Data collection in progress)
- Child plasma miRNA profiles related to intellectual disability? (Data collection in progress)

Interactions with other components of CIFASD (aside from Chambers/UCSD)

• Current collaborations

- Weinberg & Hashimoto-Torii and Torii
 Biomarker networks (trying to obtain data from common samples)
- Biomark
 Wozniak
- VVOZIIIAK
- miRNA analyses. Child samples being saved (older ages)
- Potential future collaborations
 - Weinberg and Coles
 - Adult effects of PAE
 - Foroud, Parnell/Eberhart
 - Genetic contributions to miRNA responses to PAE
- Additional collaborations with CIFASD members

Thomas

Hornas Balaraman S, Idrus NM, Miranda RC, <u>Thomas I</u>D. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure. Alcohol. 2017 May;60:159-167. PMOID: PMC2559286.

Acknowledgments

University of New Mexico

Dr. Ludmila Bakhireva

Dr. Kathleen Grant

• Dr. Victoria Roberts

Dr. Natali Newman

Dr. Karen Moritz

Omni-Net Ukraine

Dr. Lisa Akison

• Dr. Christopher Kroenke

University of Queensland

Dr. Natalya Zymak-Zakutnya

Dr. Andrea Allan

MATTR/OHSU

<u>TAMU</u> Postdoctoral Fellows

Dr. Amanda Mahnke

• Dr. Sridevi Balaraman

• Alex Tseng

Nihal Salem

Undergraduates

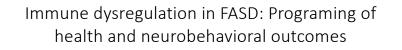
Megan Pope

Tenley Lehman University of San Diego

Dr. Christina Chambers

Alan Wells

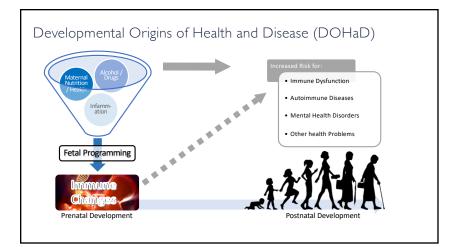
- Jordan Schafer
- Dr. Wladimir Wertelecki
 Dr. Lyubov Yevtushok

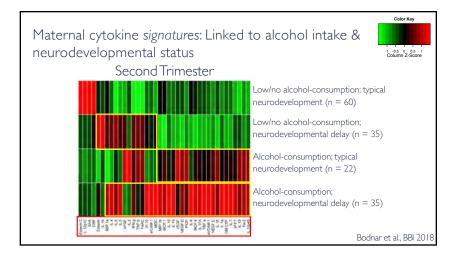

Financial Support

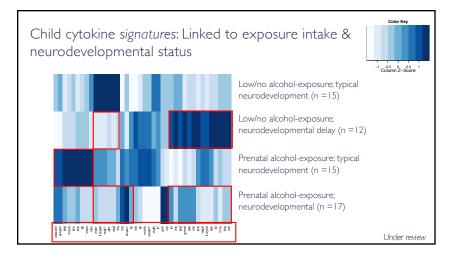
Supported by P50 AA022534, U01 AA01483, U24AA014811, R24 AA019431, R01 AA021981, R01 AA024659, F31 AA026505, NIH Office of Dietary Supplements, Texas-DSHS/DHHS, and the National Health and Medical Research Council of Australia

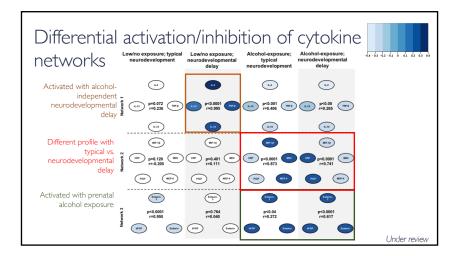
Data Availability

https://cifasd.org/data-sharing/




Weinberg Update Tamara Bodnar CIFASD Meeting October 28 – 29, 2019


JBC a place of mind THE UNIVERSITY OF BRITISH COLUMBIA


Faculty of Medicine Department of Cellular & Physiological Sciences

Study Aims:

<u>Aim 1</u>. Use validation cohorts to confirm the utility of maternal and infant/child immune parameters as possible biomarkers and predictors of alcohol-related

health and neurobehavioral outcomes.

- a) Examine cytokine levels in matches mother-infant pairs from Dr. Chambers' ongoing longitudinal study in Ukraine.
- b) Examine cytokine levels in a population with different cultural/ethnic/SES composition San Diego repository being developed by Drs. Jones and Chambers (maternal plasma samples, blood spots at birth, childhood/adolescent cytokine levels.
- c) Examine cytokine levels in children receiving choline supplementation as part of Dr. Wozniak's clinical trial (pre, post choline supplementation)

<u>Aim 2</u>. Extend our assessment of the immune system in individuals with FASD into adulthood.

Examine cytokine levels, immune/health, and other related outcomes in cohorts of adults with FASD in Vancouver (Dr. Weinberg), Seattle (Dr. Grant), and Atlanta (Dr. Coles)

Grant Timeline:							
Activities	Year 1 2017 – 2018	Year 2 2018 – 2019		r 3 2020	Year 4 2020 – 2021	Year 5 2021 – 2022	
Vancouver	Recruitment, blo	Manuscript prep					
San Diego	Blood colle	Manuscript prep					
	Analysis: maternal samples	Analysis: blood spots	Analysis	: child sar pr	mples; manuscript ep	Manuscript prep	
Ukraine	Recruitment, analysis of	amples; manuscript ep					
Minnesota	Rec	Analysis; manuscript prep					
Atlanta Seattle	Recruitment & analysis as samples arrive					Analysis; manuscript prep	

Aim I Progress:

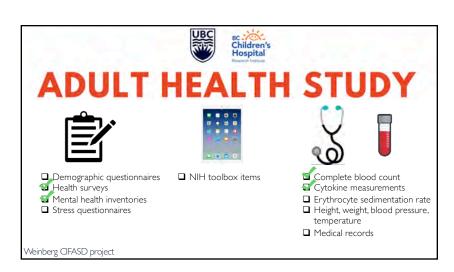
<u>Aim 1</u>. Use validation cohorts to confirm the utility of maternal and infant/child immune parameters as possible biomarkers and predictors of alcohol-related health and neurobehavioral outcomes.

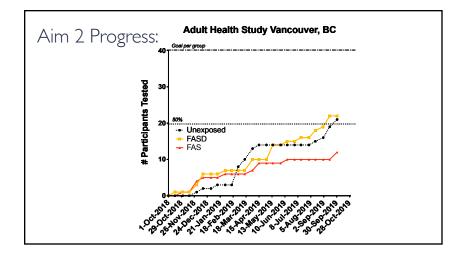
- a) Examine cytokine levels in matches mother-infant pairs from Dr. Chambers' ongoing longitudinal study in Ukraine.
 - Samples of maternal/child pairs (n=59) will be received October 2019.
 - Cytokine measurements will be completed by November 2019.
 - Data analysis will be completed by December 2019.
 - BNDF measurement added for maternal/child pairs
- Additional shipment of samples from Ukraine expected in 2020.

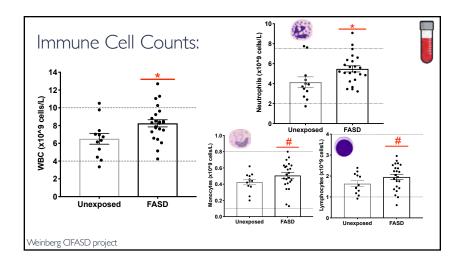
Aim I Progress:

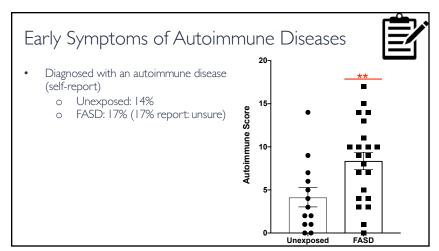
<u>Aim 1</u>. Use validation cohorts to confirm the utility of maternal and infant/child immune parameters as possible biomarkers and predictors of alcohol-related health and neurobehavioral outcomes.

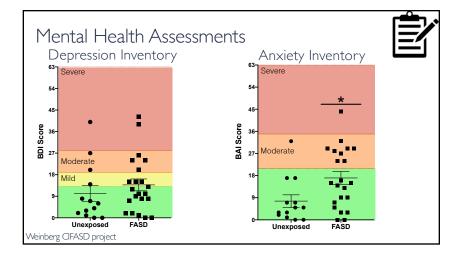
- b) Examine cytokine levels in a population with different cultural/ethnic/SES composition San Diego repository being developed by Drs. Jones and Chambers (maternal plasma samples, blood spots at birth,
 - childhood/adolescent cytokine levels.
 - 20 samples from children with PAE, FASD collected by Dr. Jones samples to be shipped soon
 - Review process to receive samples from California biobank underway (maternal plasma, blood spots at birth)

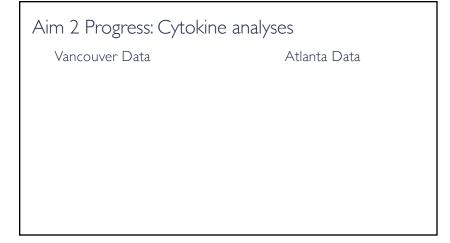

Aim I Progress:

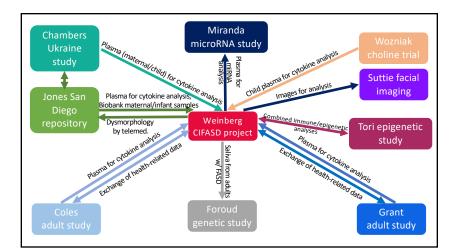

<u>Aim 1</u>. Use validation cohorts to confirm the utility of maternal and infant/child immune parameters as possible biomarkers and predictors of alcohol-related health and neurobehavioral outcomes.


c) Examine cytokine levels in children receiving choline supplementation as part of Dr. Wozniak's clinical trial (pre, post choline supplementation)

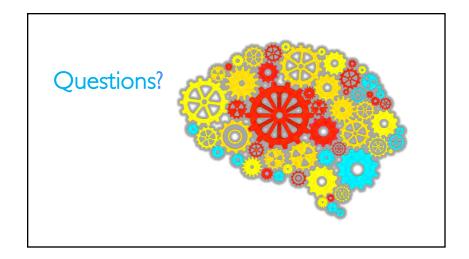

- 59 samples across 31 unique individuals collected to date.
- Samples will be shipped at the end of the study (May 2020).
- Cytokine measurements and analysis will begin in June 2020.







Translational Potential



Cytokine signatures as biomarkers for FASD?

- Goal: Utilize cytokine signatures to help identify those children most at risk following prenatal alcohol exposure (e.g. neurodevelopmental delay).
- · Explore cytokine changes across development and in different ethnic/racial, SES etc contexts.
- Explore whether there are overarching signatures that are predictive of risk (independent of age and other factors)

Additional Products Abstracts June 2017 - present

- Bodnar, T.S., Raineki, C., Wertelecki, W., Yevtushok, L., Zymak-Zakutnya, N., Chambers, C.D., Weinberg, J., & the CIFASD. (2017). Identifying an immune signature characteristic of fetal alcohol spectrum disorder. Society for Leukocyte Biology 50th Annual Meeting, Vancouver, BC, Canada, October 5-7. 2017. Poster
- Coles, CD, Grant, T, Weinberg, J. (2018) Mapping the Undiscovered Country: Physical and Mental Health in Adults with FASD. Presented at the 8th International Research Conference on Adolescents and Adults with FASD: Review, Respond and Relate: Integrating Research, Policy and Practice around the World, Vancouver, BC, April 18-21, 2018.
- Bornar, T.S., Naineki, C., Wertelecki, W., Yevtushok, L., Plotka, L., Zymak-Zakutnya, N., Wells, A., Honerkamp-Smith, G., Coles, C.D., Kable, J.A., Chambers, C.D., J. Weinberg, the CHASD, (2018). Cytokine disturbances associated with prenatal alcohol exposure in children: implications for health and development. Alst Annual Scientific Meeting of the Research Society on Alcoholism. San Diego, C.J., June 19-20. Alcohol Clin Dep Res 42(5): 664.
- Bodnar, T., Raineki, C., Wertelecki, W., Yevtushok, L., Zymak-Zakutnya, N., Honerkamp-Smith, G., Wells, A., Woordward, T., Coles, C.D., Kable, J. Chambers, C., Weinberg, J., and the CIFASD, Alcohol intake and immune function: Associations between maternal immune networks and child negrodeyelopmental outcome: Alst Annual Scientific Meeting of the Research Society on Alcoholism, June 15-20, 2018. Alcohol Clin Exp Res
- Bodnar, T., Raineki, C., Wertelecki, W., Yerushok, L., Plotta, L., Zymak-Kakutnya, N., Wells, A., Honerkamp-Smith, G., Coles, C., Kable Weinberg, J. and the UFASD (2018). Childhood cytokine profiles are altered by prental alcohol exposure: Risk vs. resilience signatur Interenational Society for Developmental Psycholohology, October 31-November 2, Washington, D.C. Dev Psychobiol 60 (Suppl 2):10. imbers, C., eting of the
- Raineki, C. Bodnar, T.S. Wertelecki, W. Yevtushok, L. Plotka, L. Zvmak-Zakutnya, N. Wells, A. Honerkamp-Smith, G. Coles, C.D., Kable, J.A. Chambers, C.D., Vernberg, the UFASD, IZUI8), Alcohol consumption during pregnancy is associated with altered maternal and child immune function, 2018 Alcohol & the Nervous System: Gordon Research Conference. Galveston, TX, March 4-9, 2018.
- Bodnar, T.S., Weinberg, J. and the CIFASD (2019). Prenatal alcohol exposure disrupts the immune milieu: Impacts over the life course. In Symposiume (Weinberg, Organizer and Chair). Neuroimmune dysfunction and health outcomes following prenatal alcohol exposure. Complementary cross-center perspectives. 424n Annual Scientific Meeting of the Research Society on Alcoholism. Minneapolis, MN, June 22-26. Alcohol Clin Exp Res, 43 (51).261A
- Weinberg, J., sodnar, T.S., Raineki C., Oberlander, T.F. Chambers, C., Jones, K.L., Coles, C., Grant, T., Loock, C. Prenatal alcohol exposure Programming, stress, immune function, and vulnerability over the fifespan. DOHab 2019, Melbourne, Australia, October 20-23, 2019.
- Weinberg, J. Coles, CD, Grant, T. (2020) Exploring Health Outcomes in Adults with FASD: Evidence from Three North American Research Study Sites. Invited Prenary Sesion for the 9th International Research Conference on Adolescents and Adults with FASD: Review, Response and Relate, Vancouver, BC, April 22-25, 2020.

Specific Aims of the Dysmorphology Research Resource

Aim #1:

- Assure consistency, as well as, accuracy in recognition of Fetal Alcohol Spectrum Disorders (FASDs) at all CIFASD project sites where new subjects are being recruited.
- Training of local physicians

Aim #2:

 Further develop and refine the telemedicine approach developed in the last funding period, we will expand upon our telemedicine capabilities

Aim #3:

 Contribute to the CIFASD Consortium research studies by utilizing and expanding upon the San Diego FASD research subject pool that we have established at Rady Children's Hospital- San Diego

Subjects Examined by Dysmorphology Research Resource

Count by Location

	2017	2018	2019	Total
Atlanta*	21			21
Minnesota	17	35	Oct. 11 & 12, 2019	52
San Diego	16	43	22	81
Seattle			31	31
Vancouver*		3	4	7
Total	54	81	57	192

*On October 1, 2019, 3 investigators from UBC were trained in San Diego on telemedicine procedures so that the adult and adolescent subjects for Joanne Weinberg's U01 can receive a Dysmorphology examination using telemedicine. We are pursuing a similar telemedicine arrangement for examining adult subjects for Claire Cole's U01 in Atlanta.

Subjects Examined by Dysmorphology Research Resource

Count by FAS Status							
	2017	2018	2019	Total			
Yes	5	6	4	15			
No	24	50	21	95			
Deferred*	25	25	1	51			
Total	54	81	26	161			

*At least one facial feature <u>OR</u> Microcephaly defined as OFC ≤10th% AND growth deficiency defined as weight and/or length s10th% <u>OR</u> Microcephaly and at least one of the following features: ptosis, railroad track ears, hockey stick palmar crease, other palmar crease abnormalities, joint contractures, decreased pronation/supination at the elbows, hirsutism, heart murmur <u>OR</u> Growth deficiency defined as weight and/or length s10th% AND at least one of the following features: ptosis, railroad track ears, hockey stick palmar crease, other palmar crease abnormalities, joint contractures, and decreased pronation/supination at the elbows, hirsutism, and heart murmur.

Physicians Trained

- 24 pediatric residents were trained who previously had no experience with diagnosing the FASD
- 1 pediatrician who has been examining subjects for the last 10 years was retrained

Specific Aims of the Dysmorphology Research Resource

Aim #1:

- Assure consistency, as well as, accuracy in recognition of Fetal Alcohol Spectrum Disorders (FASDs) at all CIFASD project sites where new subjects are being recruited.
- Training of local physicians

Aim #2:

• Further develop and refine the telemedicine approach developed in the last funding period, we will expand upon our telemedicine capabilities

Aim #3:

 Contribute to the CIFASD Consortium research studies by utilizing and expanding upon the San Diego FASD research subject pool that we have established at Rady Children's Hospital- San Diego

San Diego FASD Research Subject Pool

Number of subjects recruited all of whom were prenatally exposed to alcohol = 211.

FAS or PFAS = 47

Alcohol Related Neurodevelopmental Disorder = 61

Prenatal Alcohol Exposure = 103

Subjects from San Diego Research Subject Pool Sent to Other Studies

- Decision Tree: Dr. Sarah Mattson U01 SDSU Subjects sent = 126 Additional Subjects requested over the next 3 years = 134
- Dr. Joanne Weinberg U01 University of British Columbia Subjects recruited = 20 Additional Subjects requested over the next 3 years = 20 prenatally exposed/ 20 controls
- Dr. Kazue Hashimoto-Torii Children's National Research Center Subjects recruited = 21 Additional Subjects requested over the next 3 years = 8 prenatally exposed/ 11 controls

Biorepository Specimens Collected

Total # of blood specimens collected from prenatally exposed subjects = 22

- 22 blood spot cards deposited in UCSD Biorepository
- 20 frozen plasma samples stored in UCSD Biorepository
- 21 whole blood samples from prenatally exposed subjects shipped overnight to Children's National Medical Center in Washington D.C. for Kazue Hashimoto-Torii (Number of samples required = 40 – 29 prenatally exposed and 11 controls)
- 20 plasma samples from prenatally exposed subjects frozen for later shipment to UBC for Joanne Weinberg's U01 (Number of samples required = 60 – 40 prenatally exposed and 20 controls)

Translational Potential

Aim #2: Further develop and refine the telemedicine approach developed in the last funding period, we will expand upon our telemedicine capabilities

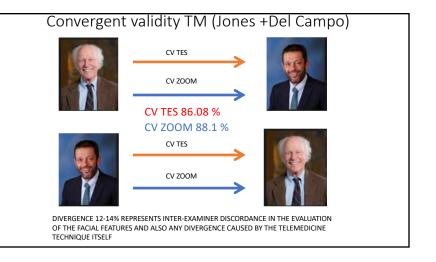
The Public Health relevance is extraordinary

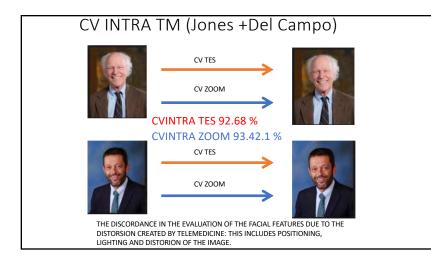
This will provide the opportunity for a public health nurse with little expertise to affectively evaluate individuals for FAS in underserved areas of the U.S. (Alaska, New Mexico, western Minnesota) as well as elsewhere in the world

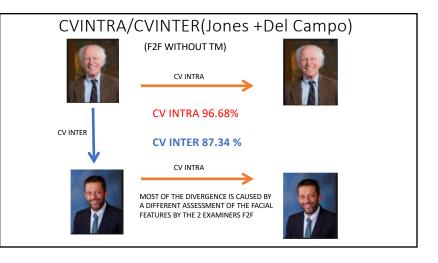
The cost will be nominal, the training will be minimal, and the possibilities the technology holds for the future are extraordinary.

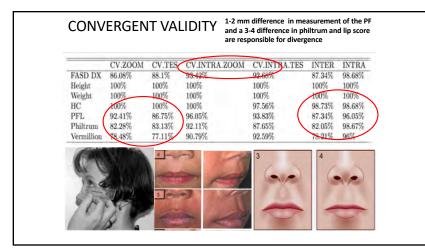
AIM 3. Convergent Validity of Telemedicine in FASD

Miguel del Campo, MD, PhD Kenneth L. Jones, MD CIFASD

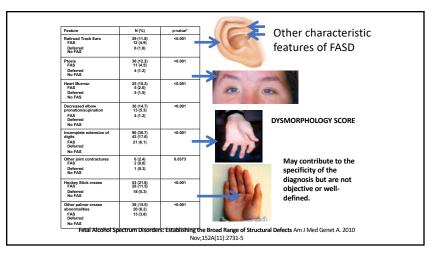

TELEMEDICINE SYSTEM (TES)






DATA COLLECTION OF ALL MEASUREMENTS AND DYSMORPHIC FEATURES 8 TIMES Convergent Validity per _ Male 134 424 424 1231 1 25 25 2.8 78 230 230 230 2.30 N 230 423 4 411 47.51 47.4 2.8 18 2.7 2.87 2.3 0 2.3 0 2.3 0 2.50 N +

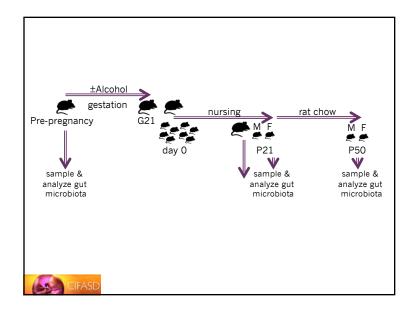
			nore facial features	of FAS/32 without	ut	
	MPLETE DAT					
	V-EXPOSED C					
	CV.ZOOM	CV.TES	CV.INTRA.ZOOM	CV.INTRA.TES	INTER	INTRA
FASD DX	CV.ZOOM 79	CV.TES 84	CV.INTRA.ZOOM 76	CV.INTRA.TES 82	INTER 79	INTRA 76
	e me o om	CITTEDO	01 milling 00 m	CV.INTRA.TES 82 78	marine	INTRA 76 72
Height	79	84	76		79	
Height Weight	79 74	84 80	76 72	78	79 75	72
Height Weight HC	79 74 74	84 80 80	76 72 72	78 78	79 75 75	72 72
FASD DX Height Weight HC PFL Philtrum	79 74 74 79	84 80 80 84	76 72 72 72 76	78 78 82	79 75 75 75 79	72 72 76

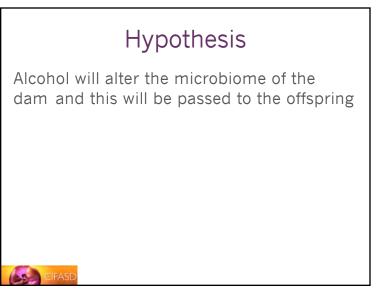

		DEL CAMPO-ZOOM	DEL CAMPO-TES	JONES-ZOOM	JONES-TES
FAS	SD DX	n = 41	n = 43	n = 38	n = 41
	0	26 (63.4%)	27 (62.8%)	30 (78.9%)	31 (75.6%)
	1	8 (19.5%)	8 (18.6%)	3 (7.9%)	3 (7.3%)
	2	7 (17.1%)	8 (18.6%)	5 (13.2%)	7 (17.1%)
Hei	ght	n = 38	n = 41	n = 36	n = 39
	0	28 (73.7%)	28 (68.3%)	28 (77.8%)	28 (71.8%)
	1	10(26.3%)	13 (31.7%)	8 (22.2%)	11 (28.2%)
We	ight	n = 38	n = 41	n = 36	n = 39
	0	29 (76.3%)	29 (70.7%)	28 (77.8%)	28 (71.8%)
	1	9 (23.7%)	12 (29.3%)	8 (22.2%)	11 (28.2%)
HC		n = 41	n = 43	n = 38	n = 41
	0	29 (70.7%)	29 (67.4%)	27 (71.1%)	27 (65.9%)
	1	12 (29.3%)	14 (32.6%)	11 (28.9%)	14 (34.1%)
PF	Ĺ.	n = 41	n = 43	n = 38	n = 41
/	0	37 (90.2%)	39 (90.7%)	32 (84.2%)	33 (80.5%)
/	1	4 (9.8%)	4 (9.3%)	6(15.8%)	8 (19.5%)
Phi	ltrum	n = 41	n = 43	n = 38	n = 40
	0	24 (58.5%)	23 (53.5%)	30 (78.9%)	29 (72.5%)
	1	17 (41.5%)	20 (46.5%)	8 (21.1%)	11 (27.5%)
Ver	million	n = 41	n = 43	n = 38	n = 40
	0	22 (53.7%)	22 (51.2%)	23~(60.5%)	23 (57.5%)
	1	19(46.3%)	21 (48.8%)	15 (39.5%)	17 (42.5%)

- · Changes in methodology/Limitations
 - Specialists on both sides of the TM system
 - Population rich in FASD features, divergence is made more evident than it would be in a prevalence study
 - Divergence for diagnosis involves partial FAS mostly (w exposure)
- Recall memory
- Implications

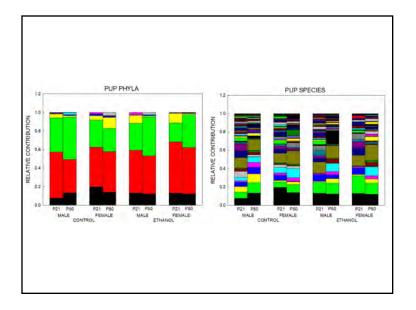
· Inter-examiner divergence can affect diagnosis

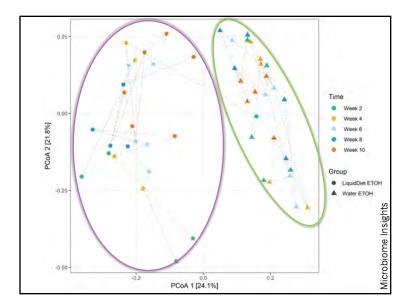
We must remember:

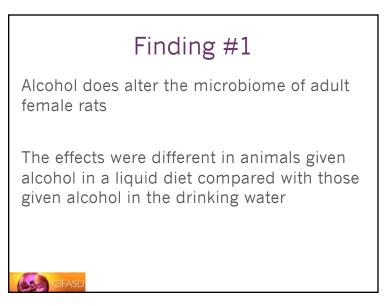

- · Diagnosis of FASD is triaxial, multidisciplinary,
 - alcohol exposure
 - physical features
 - cognition and Behavior
- Therefore, the impact of the divergance in having FASD or not in a real clinic or prevalence study scenario would be much less.
- · Imprecision in measurement of PF and subjectivity in philltrum/lip scores
- Other physical features and a dysmorphology score is not used, which may add accuracy.
- Convergence validity of additional physical features has not been determined yet and may add convergence to the physical diagnosis of FASD

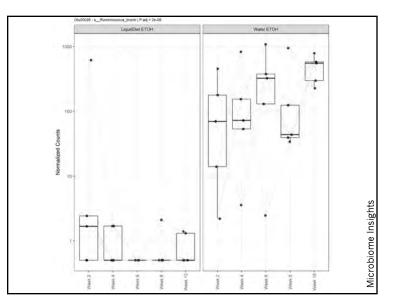


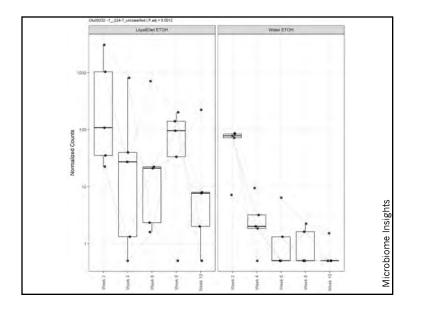
CONCLUSIONS

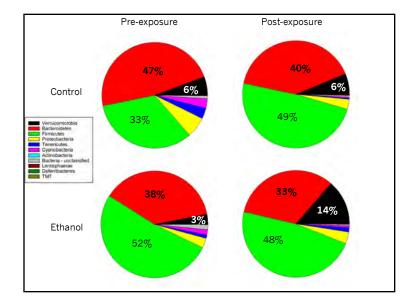

- Telemedicine is a valid, accurate and fast system for physical diagnosis in FASD, and training of other professionals.
- Common hand held devices are cheaper, faster and more available, therefore preferable, but require a secure connection
- Inter-examiner divergence highlights two facts:
 - Cut-offs of continuous variables are artificial
 - Many features are subjective
 - We don't have definitions or cut-offs for the 3 features or all others
 - Future needs and directions which may improve convergence for the diagnosis:
 - Advanced 3D facial imaging combined with Telemedicine
 - Automatic/objective assessment of the facial differences.
 - Evaluation of the global dysmorphology, not just the 3 facial features.

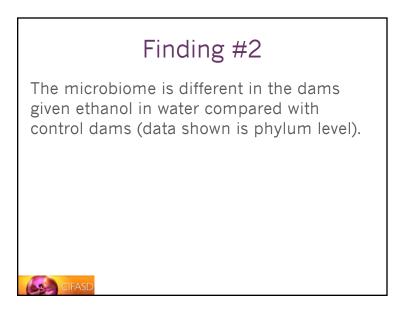


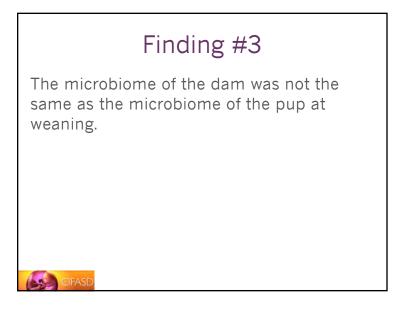


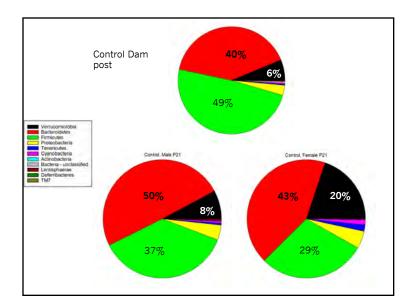


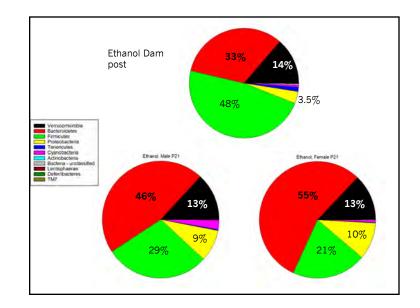

Taxonomic R	ank	Mnemonic
Kingdom		Katy
Phylum 1	.1	Perry
Class	.8	Comes
Order 2	25	Over
Family 4	15	For
Genus 7	1	Grape
Species a	38	Soda

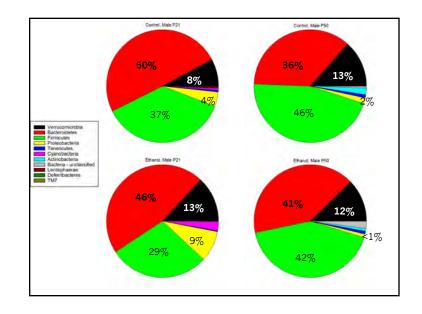


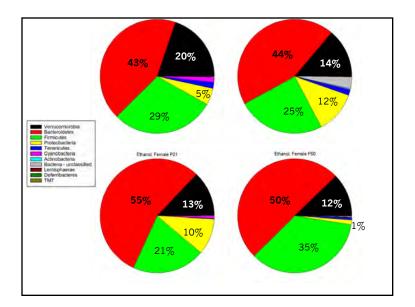


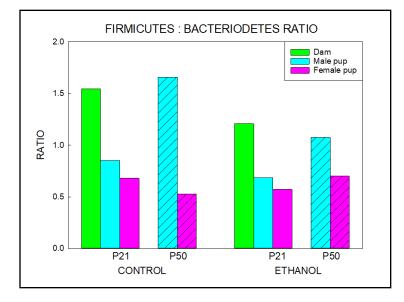


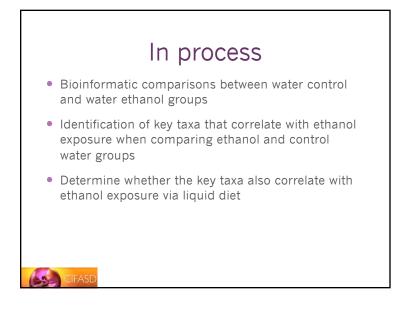


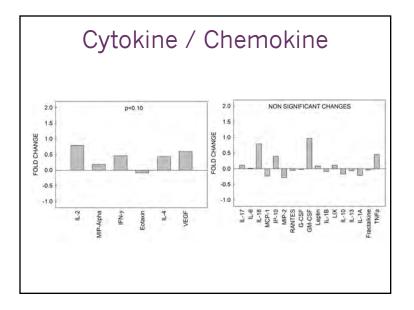




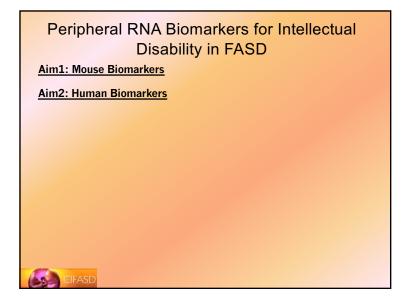


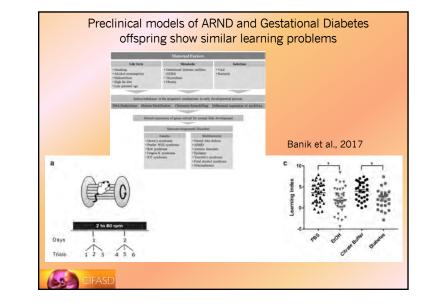


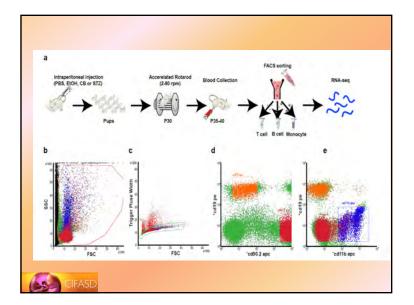

Finding #4 The microbiome of the pup changes with age.

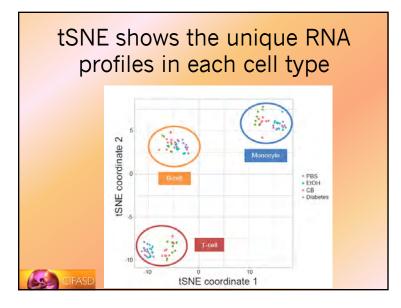


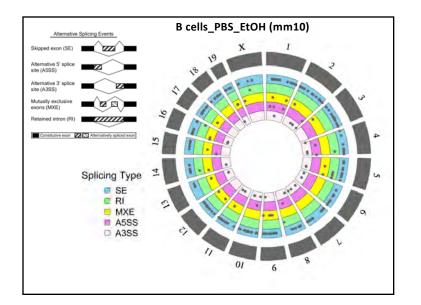
# of Differentially Expressed Taxa (otu)							
CONTROL	up-regulated	down-regulated					
P21 vs Dam	47	106					
P50 vs Dam	69	85					
P50 vs P21	99	53					
ETHANOL							
P21 vs Dam	62	73					
P50 vs Dam	48	116					
P50 vs P21	118	51					
P50 VS P21 118 51							

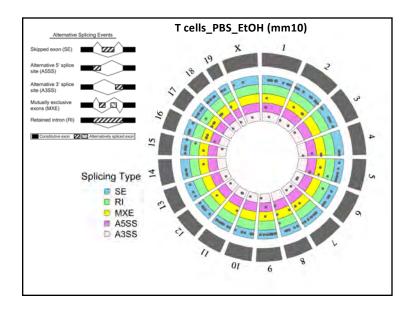

Synergy

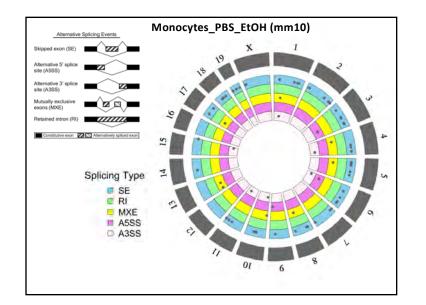

- When key taxa are identified these could be assayed in the human cohorts – in any of the human projects
- Cytokine outcomes can be compared with Claire Coles' and Joanne Weinberg's data in humans and in Weinberg's animal model to determine if there is a common signature
- Genetic contributions to microbiome and/or immune profiles with Tatiana Foroud and Leah Wetherill

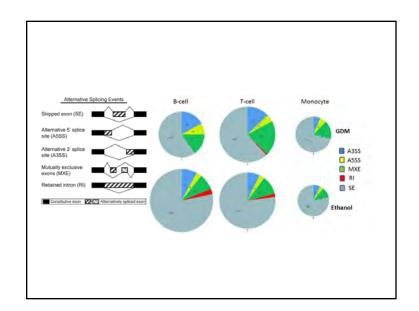

Translational Potential

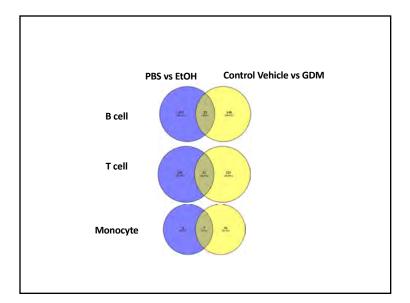

- Could the microbiome be used for identification of
 - Alcohol exposure
 - Risk for effects on somatic growth
 - Risk for metabolic / physiological outcomes
 - Risk for neurological outcomes or severity of outcomes

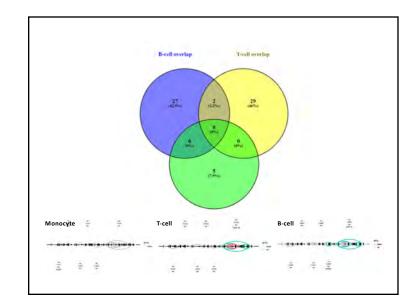

CIFASE











What's next?

We are currently comparing gene expression changes and changes in splicing events to further narrow down the biomarker candidates. These candidate genes will be placed for an Al-based system to predict behavioral problems.

Aim2: Human FASD blood samples study

We have collected T cells, B cells, monocytes and plasma from 22 FASD patients in the San Diego cohort. Our target sample number is 30 FASD patients and 11 controls. RNA sequencing will be performed once all of samples are collected.

Synergy within CIFASD

We defined potential biomarkers that are relevant to changes in inflammation in FASD. The data will be shared between a few groups who have an interest in that aspect.

Once we analyze the human dataset, we are going to cross analyze the GWAS SNPs (Foroud) and our RNA splicing data to define loci which may be susceptible to altered splicing events upon alcohol exposure.

Translational Impact

Comparison between FASD and GDM models provides important clues on the mechanisms shared by these kids who have similar neurocognitive problems.

CIFASD