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It has been demonstrated that anthropometric data can accurately distinguish individuals with Fetal alcohol 

syndrome (FAS) from those who were alcohol exposed but do not manifest the full spectrum of clinical features, and 
those who were not alcohol exposed [2]. A more efficient means to collect such data may be through three-dimensional 
(3-D) digitizing instruments, which can capture a facial image that can then be used to collect a wide range of known 
and novel clinical variables. Through the collection of 3-D images from individuals of variable ethnicity, age and 
exposure histories, it should be possible to identify a series of variables that effectively discriminate individuals who 
were prenatally exposed to alcohol and the degree to which they were exposed, from those who were not exposed.  

The goal of this collaboration is to analyze three-dimensional (3-D) facial images from individuals of variable 
ethnicity, age and history of alcohol exposure. The analyses of 3-D facial imaging will be developed and utilized for 
more effective clinical diagnosis of FAS, as well as the more broadly defined FASD. In addition, we believe these 
studies will generate important insight regarding the changes that occur in the face both prenatally and postnatally that 
produce the clinical features associated with FAS and thereby provide improved understanding of the 
pathophysiological effects of ethanol on human development.  

To accomplish these goals we propose the following specific aims: 1) Train and supervise personnel at each recruitment 
site to ensure collection of standardized data; 2) Analyze the 3-D facial imaging data to identify the measurements that 
most efficiently differentiate alcohol exposed from control subjects; 3) Utilize algorithms and methods derived from the 
emerging field of Automated Facial Recognition (AFR) to extract and identify the most discriminating higher order 
surface features from 3-D facial images, with the goal of developing an automated method of identifying facial features 
diagnostic of prenatal alcohol exposure; and 4) Combine the results from the direct and higher order measurements 
derived from the 3-D facial imaging with variables collected from other study domains to improve the power to 
accurately discriminate alcohol exposed from control subjects and to better understand the pathophysiological effects of 
ethanol on human development.      
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a.  SPECIFIC AIMS 
 

Jones and Smith first described fetal alcohol syndrome (FAS) in 1973 [1]. The basic features most 
frequently associated with prenatal exposure to alcohol include growth deficiencies and neurodevelopmental 
abnormalities of the central nervous system, as well as a pattern of minor facial anomalies including short 
palpebral fissures, thin upper lip, flattened philtrum and midface hypoplasia. The presence of these findings in 
an individual with documented prenatal exposure to alcohol typically results in a diagnosis of FAS. Posing a 
greater clinical challenge are those individuals who manifest some, but not all, of these clinical features and 
who were known to have prenatal alcohol exposure. Additional difficulties in diagnosing FAS arise from the 
reduced prominence of abnormal facial features as the child grows toward adulthood, and limited understanding 
of the effect of ethnic and racial variation on the associated facial features. The development of a series of 
categories, that attempt to encompass the presenting symptoms, has led to the terms fetal alcohol effects (FAE), 
partial FAS (PFAS), alcohol-related birth defects (ARBD) and alcohol-related neurodevelopmental disorder 
(ARND). The terms have been placed under the umbrella of fetal alcohol spectrum disorders (FASD).  

It has been demonstrated that anthropometric data can accurately distinguish individuals with FAS from 
those who were alcohol exposed but do not manifest the full spectrum of clinical features, and those who were 
not alcohol exposed [2]. Collection of such data can be relatively tedious and requires specialized training 
however; the advent of new technology makes the collection of such data potentially easier and more cost-
effective. Three-dimensional (3-D) digitizing instruments can capture a facial image that can then be used to 
collect a wide range of known and novel clinical variables. Through the collection of 3-D images from 
individuals of variable ethnicity, age and exposure histories, it should be possible to identify a series of 
variables that effectively discriminate individuals who were prenatally exposed to alcohol and the degree to 
which they were exposed, from those who were not exposed.  

The goal of this collaboration is to analyze the images provided by each of the sites collecting data from 
individuals of variable ethnicity, age and history of alcohol exposure. The analyses of 3-D facial imaging will 
be developed and utilized for more effective clinical diagnosis of FAS, as well as the more broadly defined 
FASD. In addition, we believe these studies will generate important insight regarding the changes that occur in 
the face both prenatally and postnatally that produce the clinical features associated with FAS and thereby 
provide improved understanding of the pathophysiological effects of ethanol on human development. To 
accomplish these goals we propose the following specific aims: 

 

1) Train and supervise personnel at each recruitment site to ensure collection of standardized data. 
 
2) Analyze the 3-D facial imaging data to identify the measurements that most efficiently differentiate alcohol 

exposed from control subjects.  
 
3) Utilize algorithms and methods derived from the emerging field of Automated Facial Recognition (AFR) to 

extract and identify the most discriminating higher order surface features from 3-D facial images, with the 
goal of developing an automated method of identifying facial features diagnostic of prenatal alcohol 
exposure. 

 
4) Combine the results from the direct and higher order measurements derived from the 3-D facial imaging 

with variables collected from other study domains to improve the power to accurately discriminate alcohol 
exposed from control subjects and to better understand the pathophysiological effects of ethanol on human 
development. 
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b. BACKGROUND  
 

Significance 
Fetal alcohol syndrome is the most common nonhereditary cause of mental retardation. A number of 

studies have examined different populations both within the United States and throughout the world to estimate 
the incidence and prevalence of this devastating syndrome. It is estimated that the prevalence in the general 
population of FAS is likely to be between 0.5 and 2.0 per 1,000 births. Broadening the clinical definition, to 
also include ARBD with FAS, results in a combined prevalence estimate of at least 10 per 1,000 births, or 1% 
of all births [3]. Importantly, studies outside the U.S. have found even higher rates of prevalence in particular 
geographic regions. For example, in a town in the Western Cape Province of the Republic of South Africa the 
prevalence of FAS was estimated to be 46.4 per 1,000 in first grade school children [4]. It was estimated, over a 
decade ago, that the incremented annual cost of treating individuals with FAS is $74.6 million. About three-
quarters of this economic burden is associated with care of FAS cases having mental retardation [5]. 

 

Clinical and Diagnostic Issues 
When the term fetal alcohol syndrome was first coined, it was used to describe the phenotype of the 

most severely affected individuals. Since that time, it has become apparent that effects of prenatal alcohol 
exposure on the fetus can be broad-based and not limited to the original description of FAS [6], [7], [8], [9]. 
Studies have shown that the effects of prenatal alcohol exposure fall along a continuum from extreme (perinatal 
fetal demise) to more subtle anomalies (behavioral problems) and that FAS represents the severe end of the 
continuum in the phenotypic expression of prenatal alcohol exposure [10], [11], [7], [8]. However, the 
diagnostic guidelines that most clinicians and researchers currently use do not differ greatly from the original 
categories defined by Jones and Smith [7]. 

 In the United States, most children affected by prenatal alcohol exposure are diagnosed later in life. Yet, 
the prevalence of FASD at birth is assessed through sequential evaluation of infants while they are still in 
newborn nurseries [12], [13], [14]. It is likely that the prevalence of FASD is underestimated because some of 
the primary diagnostic features of FAS may not be identifiable in the newborn period. Studies have found that 
the criterion used to diagnose FASD is not easily applied during the neonatal and infancy period. For example, 
many primary facial features associated with FAS are difficult to discriminate in newborns [7], [15], [16], [17], 
growth deficits associated with alcohol exposure are not specific to FAS [18], and neurodevelopmental 
outcomes are not easily measured during early infancy [19].  Improved detection of children with FASD is 
critical because research suggests that early identification of alcohol-exposed children fosters positive outcomes 
and reduces the likelihood of secondary disabilities [20]. 

 Difficulties encountered in recognizing and diagnosing FASD are not limited to the neonatal period. 
Because many features associated with prenatal alcohol exposure are not discrete or unique to prenatal alcohol 
exposure and because the features have variable expression, its recognition can be elusive for all age groups. 
There are many factors that contribute to the variable expression of effects of prenatal alcohol exposure. These 
factors can include, but are not limited to: maternal characteristics (age, race, height, diet, genetics, etc.); the 
duration, timing, and quantity of alcohol exposure; infant characteristics (gestational age, race, genetics, etc.); 
and socioeconomic factors. Another confounding factor in diagnosing FASD is that standards have not been 
established for determining thresholds for the various subcategories of the disorder. In addition, “the ability to 
recognize this syndrome varies according to the physician’s skill and interest in dysmorphologic features; thus, 
the estimated prevalence rates for FAS among populations are directly affected by such ascertainment biases” 
[21].  Therefore, applying specific diagnostic criterion during the newborn period as well as at other ages could 
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dramatically increase the diagnostic capabilities, increase opportunities for services for both mothers and 
children, and improve the surveillance of FAS and other effects from prenatal alcohol exposure. 

 There have been several previous attempts to clarify and classify the variable patterns of expression seen 
in children prenatally exposed to alcohol. In 1978, an additional term was coined to further describe effects of 
prenatal alcohol exposure. The term fetal alcohol effects (FAE) was proposed by Clarren and Smith to be used 
as a diagnosis when a congenital anomaly could be proven to be related to alcohol exposure in utero. In 1980, 
the Fetal Alcohol Study Group of the Research Society on Alcoholism published new diagnostic criterion 
derived from the original guidelines published by Jones and Smith (1973) [22].  The modified criterion still 
required the presence of the three main features of FAS, but in order to give more standardization and 
objectivity to the diagnosis, the study group made the requirements more specific. For example pre- and post-
natal growth retardation was defined as below the 10th percentile and 2 of 3 facial features had to be present. 
The study group also proposed that if all three criteria could not be met, the diagnosis of FAE should be used. 
Later, documentation of maternal alcohol use during pregnancy was required for the diagnosis of FAS, which 
led to the FAE diagnosis being used in ways that the study group and others had not intended. Many clinicians 
would use the diagnosis of FAE whenever alcohol exposure was suspected, while others would use it when the 
clinical signs of FAS were present but lacked the documentation of prenatal alcohol exposure. To others, the 
term “effects” became synonymous with “less severe” and many patients were denied social services and early 
intervention because the diagnosis of FAE carried the stigma of the individual not being as seriously affected as 
those diagnosed with FAS. In 1996, in an attempt to address some problems with the diagnostic criterion and 
the use of the label FAE, the Institutes of Medicine (IOM) published a new diagnostic criterion for FAS and 
alcohol-related effects [8]. 

 Many clinicians and researchers have reported on the pitfalls of the diagnostic criteria discussed above 
([21], [23], [7], [24], [25], Khoury et al., 1996, [26], [8], [27]. These criteria lack sufficient specificity to assure 
diagnostic accuracy and precision.  For example, the criterion for CNS dysfunction did not address how many 
areas of deficit must be present, how severe the deficits must be or what level of documentation must exist to 
substantiate the presence of the deficit (i.e. parental history, psychometric testing or structural imaging). The 
criterion for the facial phenotype was equally non-specific. It did not provide guidelines for how many facial 
features must be present, how to assess the severity of the facial features, and what standards should be used to 
assess their severity. Astley and Clarren [28] summarized the problems with previous diagnostic criteria, noting 
the “lack of objective quantitative scales to measure the magnitude of expression of key diagnostic features.” (p. 
410). For example, no standards or quantitative measurement scales have been established to determine when 
features are “short,” “small,” “thin,” or “flat” enough to be considered a true case definition of FAS or FASD. 
Other problems include the likelihood that some of the characteristics change with time, and that many 
diagnostic traits fall along a continuum of expression. Finally, expression of key traits are likely to vary from 
individual to individual, and some may be influenced by racial and familial traits [7]. None of these problems 
were addressed in previous approaches. 

 Astley and Clarren [29] presented a more objective and comprehensive, case-defined method for 
diagnosing the full spectrum of outcomes in individuals prenatally exposed to alcohol [29], [30], [28].  The new 
method, called the 4-Digit Diagnostic Code, used a numerical scale that reflected the magnitude of expression 
of 4 key diagnostic features of FAS in the following order: 1) growth deficiency, 2) the FAS facial phenotype; 
3) brain damage/dysfunction; and 4) gestational alcohol exposure. Each was ranked independently on a 4-point 
Likert scale, with 4 reflecting severe expression of the feature and 1 reflecting no expression of the feature. 
While earlier diagnostic methods required clinicians to subjectively identify the presence or absence of minor 
facial anomalies, the 4-Digit Diagnostic Code was based on empirical data gathered from previous studies that 
employed discriminant analysis. Discriminant analysis was used to identify the cluster of minor anomalies and 
their magnitude of expression that best differentiated individuals with FAS, from matched controls without 
FAS. Analysis identified 3 features: reduced palpebral fissure/inner canthal distance ratio; smooth philtrum; and 
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a thin upper lip.  From discriminant analysis, a discriminant equation and score was created which could, with 
100% sensitivity and specificity, discriminate FAS subjects from controls in the study sample. Later this 
method was refined to be used on photographs and to include only the measurement of the palpebral fissure 
instead of the ratio of palpebral fissure/inner canthal distance. Currently the 4-Digit Diagnostic Code facial rank 
is used to diagnose the facial component of the syndrome in all patients receiving an FAS diagnostic evaluation 
in the Washington State FAS Diagnostic and Prevention Network (FAS DPN) (n=1500) [31]. 

 The 4-Digit Diagnostic Code is a vast improvement over previous subjective diagnostic criteria. It 
greatly increases the precision and accuracy of the diagnosis of outcomes of prenatal alcohol exposure, better 
characterizes disabilities of alcohol exposed individuals that do not have FAS, documents presence of alcohol 
exposure without judging its causal role, and utilizes a clinical nomenclature that separates a patient’s functional 
disabilities from his or her exposure history [28]. There are, however, some difficulties presented by this 
approach. First, the diagnostic categories are very complex. There are 256 possible 4-Digit Diagnostic Codes 
ranging from 1111 to 4444, each having a corresponding clinical name. Each of the 4-Digit Diagnostic Codes 
falls into 1 of 22 unique Clinical Diagnostic Categories. Second, photographs vary tremendously in quality, 
making assessment difficult and dependent on an experienced observer. Third, the diagnostic criterion is best 
suited for detecting the full expression of FAS and may be less able to detect individuals with more subtle 
expressions of the disorder.   

 

3-D Camera   
Although as previously mentioned, photographs vary tremendously in quality, they do have several 

advantages over direct measurements.  They provide a permanent record of the face, little specialized training is 
needed in their capture, and they are portable so they can be easily sent to specialists in other locations.  
However, two-dimensional photographs, even digital ones, contain much less detail than is available from direct 
assessment of a subject.  We believe that a more effective imaging technology may overcome this problem 
while retaining the advantages of photographs.  A variety of technologies exist for capturing 3-D craniofacial 
data. These include: computerized tomography; magnetic resonance imaging; ultrasonographic, 
stereophotographic, optoelectric and light projection systems; and laser-based digitized scanning, the method 
employed in our study.  

Only a handful of previous studies have reviewed the efficacy of this laser-based technology for 
obtaining 3-D facial images and facial measurements. Aung et al. [32] compared the facial surface 
measurements obtained from images of 30 adults, generated from a variety of laser scanner, to those obtained 
from the same 30 individuals measured directly by anthropometry. They collected 83 facial measurements using 
41 landmarks as defined in Farkas [33]. They found that: 1) the vast majority of necessary anthropometric 
landmarks could be easily identified on the scanned image (37/41); 2) those landmarks that were difficult to 
define, which were those requiring reference to the underlying bone or that tended to be blurred in the image, 
could be readily obtained if they were pre-marked; and 3) approximately one-half of the measurements (41) 
obtained on the scans were at least moderately similar (within +/- 2 mm) to the anthropometric results and one-
half (42) were viewed as “unreliable” (difference greater than +/- 2 mm). This study, however, did not assess 
the repeatability of the laser measurements, or the correlation of the laser and anthropometric measurements. In 
a more recent study, Kusnoto and Evans [34] used a Minolta Vivid laser scanner, similar to the one we propose 
to use, to assess the reliability of measurements taken from the scans compared to those derived directly from 
an alginate facial mask. They utilized 12 standard facial landmarks (frontal perspective only) to generate 21 
linear measurements. They found that differences between measurements derived from the scanned image and 
direct measurements of the face ranged from a low of “0” mm to a high of 2.5 mm.  However, correlation 
between the 2 sources of measurement was not examined, nor were percentage errors (difference between 2 
measurement techniques divided by magnitude of the measurement) calculated.  
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Summary 
By utilizing new technologies and analytical approaches coupled with quantitative assessment of facial 

form as described below, we propose to build upon previous work to create a more efficient and broadly 
applicable approach to recognizing children of various ages and ethnicities who have been affected by prenatal 
exposure to alcohol. Greater understanding of the phenotypic correlates of prenatal alcohol exposure will allow 
for better understanding of the pathophysiology of alcohol exposure, especially when this information is 
combined with information collected on other systems affected by ethanol exposure such as neural and 
cognitive development.  The integration of these research efforts will help to clarify the degree to which 
craniofacial variation reflects underlying disruptions in brain form and function. Further, we believe that this 
study will provide important data regarding facial changes that occur both prenatally and postnatally that 
produce the clinical features associated with FAS.  This knowledge may greatly improve our understanding of 
the pathophysiological effects of alcohol on human development.  

 

c. PRELIMINARY RESULTS 
In creating this cooperative agreement, we have assembled a group of investigators who bring 

complementary expertise to the question of how best to consider traditional and novel methods of assessing 
facial variation in alcohol exposed individuals as compared with ethnically- and age-matched controls. Initially, 
we describe the expertise of our collaborative group. This is followed by a brief overview of previous work 
accomplished in the quantitative approaches to facial pattern recognition that we propose to use in this study. 
Subsequently, we provide details of two Pilot Studies that were completed in preparation for this application. 

Tatiana Foroud, Ph.D. is a population geneticist whose research has focused on the study of complex 
genetic phenotypes, such as alcoholism and fetal alcohol syndrome. She has worked with a number of the 
researchers collecting samples for this study from throughout the world and will coordinate the transfer and 
analysis of all study data collected using the three-dimensional images.  Richard Ward, Ph.D. is a biological 
anthropologist with extensive experience in medical genetics and the use of morphometrics in describing and 
analyzing variation in the human face, particularly as it relates to understanding genetic and teratogenic 
syndromes.  He will bring this expertise to the construction and initial analysis of images collected from the 
various study sites and will oversee the quality control aspects of both image processing and subsequent 
anthropometric analysis. Elizabeth Moore, Ph.D. is a biological anthropologist with extensive experience on the 
use of anthropometric techniques to quantitatively define a Fetal Alcohol Syndrome phenotype.  Her research 
has demonstrated the potential utility of these quantitative approaches in detecting children with both classic 
FAS and more subtle expressions of ethanol exposure (Partial FAS, etc.). Dr. Moore will be responsible for 
obtaining anthropometric measurements from the three-dimensional images obtained at the various study sites 
and reconstructed by Dr. Ward. Shiaofen Fang, Ph.D, is an associate professor of computer science. His main 
research expertise is on computer graphics, geometric modeling and biomedical visualization. He has extensive 
experience in applying computer science technologies in biomedical applications. He had previously worked 
with Dr. Joan Richtsmeier on a craniofacial modeling project using Euclidean Distance Matrix Analysis 
(EDMA), which will also be a key data analysis technique in this project. Dr. Huang is an assistant professor in 
computer science whose research areas include computer vision, pattern recognition, image processing, and 
machine learning on the applications of biometrics (human face and gesture recognition), Human Computer 
Intelligent Interaction, video surveillance, and multimedia. He participated in the DARPA FERET face 
recognition project between 1993 and 1998 and has worked on the missing children and criminal identification 
project funded by National Institute of Justice (NIJ) since 1999.  He will bring his expertise in human face 
recognition to the analysis of FAS facial expression and the discovery of discriminating features for FAS 
classification. 
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Previous Work 

Anthropometry 
Craniofacial anthropometry has been used to assess and describe the facial phenotype and abnormal 

craniofacial variation in many syndromes such as Apert syndrome [35], Down syndrome [36], [37], 
hypohidrotic ectodermal dysplasia [38], Prader-Labhart-Willi syndrome [39], Treacher Collins syndrome [40], 
and Wiedemann-Beckwith syndrome [41], [42]. It has also been used in the clinical setting as a diagnostic aid 
[43] and as a means of objectifying clinical descriptions of individual patients [44], [45], [46], [43]. In previous 
studies, Moore and colleagues [42], [47] established that craniofacial anthropometry could be used to 
objectively identify individuals with FAS as well as those individuals prenatally exposed to alcohol who 
exhibited a subtler dysmorphia (partial FAS).  

The purpose of the Moore et al study [42], [47] was to demonstrate that an objective, multivariate case 
definition of FAS and PFAS could be derived by means of craniofacial anthropometry. Craniofacial 
measurements (n = 21) were taken of 100 individuals who had been exposed to alcohol before birth (41 FAS, 59 
PFAS) and 31 unrelated non-affected individuals (controls). A “pattern profile” was used to describe the 
craniofacial phenotype of FAS and PFAS individuals when compared to a reference population. Using stepwise 
discriminant analysis, a phenotypic discriminant function was developed from the anthropometric 
measurements. This statistical procedure was able to correctly classify all FAS and control individuals with just 
two measurements, resulting in 100% sensitivity and specificity. This is similar to the level of diagnostic 
sensitivity achieved by Astley and Clarren [25], [48] in their 4-digit approach. Stepwise discriminant analysis 
also identified 6 craniofacial measurements that could differentiate individuals with (FAS, PFAS) and without  
prenatal alcohol exposure (controls) with 96% accuracy, 98% sensitivity, and 90% specificity. These results 
demonstrate that individuals with FAS and PFAS have a distinctive phenotype that can be characterized 
anthropometrically. Results also suggest the phenotypic case definition has the potential to be used as a 
screening tool to identify individuals with FAS as well as those prenatally exposed to alcohol who exhibit subtle 
craniofacial dysmorphia. The study demonstrated that the anthropometric approach might be useful, even in 
relatively small samples. 

 

Landmark-based craniofacial modeling  
Analysis of craniofacial data, including that generated from anthropometry, has been primarily 

landmark-based, and dependent on a handful of predefined linear measurements between predetermined 
landmarks. However, higher dimensional features may also be defined and analyzed from the same landmark 
data. In a previous study, in collaboration with Dr. Joan Richtsmeier at the Johns Hopkins University, biological 
landmark feature points were used for craniofacial growth modeling and visualization. The goal was to develop 
growth patterns for growth prediction in craniofacial surgical planning [49], [50]. Landmark patterns were 
defined as a matrix of ratios of distance changes between landmarks over time. An inverse method was 
employed to derive the growth pattern using both the Euclidean Distance Matrix Analysis (EDMA) method [51] 
and a parameterized spring model [52]. Parameter estimation was carried out in a pseudo-energy minimization 
process. Other machine learning techniques such as neural networks were applied [53]. After the landmark 
growth patterns were derived, a scattered data interpolation technique was used to generate a continuous 
deformation function for the entire CT volume for visualization and simulation. As the landmarks were all 
selected on skull surfaces within the CT volume, this technique could be effectively modified for 3-D scanning 
data as well.  This approach has clear implications for detection of discriminating features between alcohol and 
non-alcohol exposed samples as will be described later. 
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Automated Facial Recognition Analysis: 
The ability to detect salient facial features is an important component of any face analysis system. The 

detection of facial landmarks underlies attention mechanisms similar to those used by the human visual system 
(HVS) to screen out the visual field and to focus its attention on salient input characteristics.  Finding facial 
features allows one to focus attention on salient facial configurations, to filter out structural noise, and to 
achieve eventual face recognition. 

Feature selection in pattern recognition involves the derivation of salient features from sensory input 
data or the feature vector. Feature selection is formed by appropriate geometry and statistic measurement in 
order to reduce the amount of data used for classification and simultaneously to provide enhanced 
discriminatory power. The selection of an appropriate set of features is one of the most difficult tasks in the 
design of pattern classification systems. At the lowest level, raw feature data is derived from noisy sensor data, 
the characteristics of which are complex and difficult to characterize. In addition, there is considerable 
interaction among features that must be identified and exploited. The typical number of possible features, 
however, is so large as to prohibit any systematic exploration of all but a few possible interaction types (e.g., 
pairwise interactions). In addition, any sort of performance-oriented evaluation of feature subsets involves 
building and testing the associated classifier, resulting in additional overhead costs. 

Our prior work in the area of facial recognition and analysis involves many fundamental techniques 
related to feature detection and analysis. A variety of image processing and computer vision techniques, such as 
edge detection, active contour, curve fitting, and reflectance map, were used for feature identification. For 
analysis, identified features were placed in a multi-dimensional vector space called feature space. Pattern 
recognition techniques were then applied in the feature space for classification and recognition. The machine 
learning approach, using a hierarchy of pattern classification steps, was applied in the facial recognition 
application [54], [55]. 

 
 
Pilot Study To Evaluate and Optimize the Use of 3-D Camera Data for Anthropometric Measurements 

We completed a pilot study designed to: 1) optimize study collection conditions to maximize the amount 
of data obtained from the camera image; 2) develop a protocol to be implemented at the study sites; 3) estimate 
the correlation of anthropometric measurements obtained directly from the subject with those obtained from the 
camera image; and 4) estimate the repeatability (intra-observer error) of the measurements from the camera 
image.  

Forty-five subjects were recruited for this pilot work. Individuals were recruited regardless of age and 
ethnicity. The sample included 27 female and 18 male subjects who ranged in age from 3-77 (Mean: 32.2). 
They were primarily Caucasian, although the sample also included African Americans and Asians. Each study 
visit consisted of: 1) completion of the Informed Consent process; 2) collection of 2 sets of 26 anthropometric 
measurements using spreading and sliding calipers and a cloth tape (see Figure 1 and Table 1); 3) collection of 
four clinical measurements using a clear plastic ruler and cloth retractable tape; and 4) collection of 2 sets of 3 
images (frontal and right and left angles). To reduce intra-measurer error, 2 sets of direct and indirect 
anthropometric measurements were taken. If the difference between 2 measurements was <2 mm, then a third 
measurement was taken. An average of the 2 closest measurements was used for data analysis.  
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Figure 1: Measurements collected 
as part of the Study Visit. Head 
width, head length, head 
circumference and facial arcs were 
not obtained from the digital 
image. 

 
 
 
Table 1: Craniofacial measurements used in analyses, their abbreviations and landmarks. 

 
Breadths Landmarks  Lengths  

 Landmarks 
 
Head breadth (HB) eu-eu Head length (HL) g-op 
Minimal frontal breadth (MF) ft-ft Nasal bridge length (NB) n-prn 
Bitragal breadth (BT) t-t Nose length (NL)  n-sn 
Bizygomatic breadth (BZ) zy-zy Philtrum length (PL)  sn-ls 
 
Bigonial breadth (BG) go-go Lower facial height (LF) sn-gn 
Interocular breadth (IO) en-en Total facial height (TF) n-gn 
Biocular breadth (BO) ex-ex Ear length (EL) sa-sba 
Palpebral fissure length (PF) en-ex 
 
Depths Landmarks Circumferences Landmarks 
 
Upper facial depth (UFD) n-t Maxillary arc (MX) t-sn-t 
Midfacial depth (MFD) sn-t Mandibular arc (MD) t-gn-t 
Lower facial depth (LFD) gn-t Head circumference (HC) on-op 
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For the purposes of the present study, we required a portable, relatively inexpensive, non-invasive 
technique that necessitated only a brief period of cooperation from study subjects. Therefore, we elected to use 
the Minolta Vivid 700 Series Non-Contact 3-D laser scanner. This system uses a Class 1 (FDA), eye-safe laser 
to rapidly scan and digitize the face into a texture mapped 3-D model. Each scan takes 0.6 seconds to complete 
and has an accuracy of 0.35 mm on the X/Y axes and 0.25 mm on the Z-axis. The texture resolution is 
400x400 pixels. For quality control, 2 scans each of the frontal, lateral right and left views of the face are 
captured. From these 6 captures, the highest quality model from each view is selected based on the continuity 
of facial expression between adjacent views. Then, stitching software will be used to merge the lateral and 
frontal images of the 3 selected models together to obtain a single 3-D model of the face.  

Data from the pilot sessions were entered into an Access database for ease of manipulation. Initially, 
the 3-D model of the face was generated from the Minolta Vivid 300 hardware and software. From this image, 
all anthropometric measures were collected with the exception of head circumference, maxillary and 
mandibular arcs. These variables could not be estimated from the image because the reconstructed image did 
not allow for the measurement of these features (head circumference is distorted by the laser refraction from 
the hair, and the arcs were not a feature of our earlier measurement software package). However, we are 
currently in the process of developing software to measure maxillary and mandibular arcs. 

We initially calculated the correlation of measurement values obtained from direct measurements to 
those obtained from camera images taken of the same individuals. Correlation assesses the degree to which the 
measurements in one medium predict those of another and as such, is a measure of reproducibility, but not of 
accuracy or deviation from the “true” measurement value [56]. It does not, for example, eliminate the 
possibility of a systematic difference (one medium always producing larger measurements than the other).  
Eleven variables had a correlation of 0.80 or greater while only 5 variables had a correlation lower than 0.80. 
Importantly, those variables with the lowest correlation were measurements with poorly defined landmarks 
(minimal frontal and bigonial breadth) or small size (palpebral fissure, inner canthal breadth and philtrum 
length).  

Next, we calculated the repeatability or percent error between the first and second measurement in each 
technique, allowing the estimation of the average interobserver error [56],  (Figure 2). These values are 
calculated after outliers greater than 2 mm were replaced by a third measurement. Measurement error was 
typically relatively small (0.06-0.13 mm) and was usually greater for camera data as compared with data 
collected directly from the subject. This difference may reflect our limited experience measuring these 
variables from the digitized image and may also indicate higher precision of the camera software (i.e. errors 
were reduced in anthropometric data through rounding). Similar to results from correlation studies, there was 
greater measurement (percent) error for variables of smaller physical size. This is a logical consequence of the 
fact that the same sized (millimeter) error in a variable with a small dimension will have a greater effect than in 
one with a large dimension. Ward and Jamison (1991) [57] noted the same relationship between error, 
measurement size and landmark definition in anthropometric studies. Similarly, the problem of localization of 
poorly defined landmark data was reported in other 3-D studies [32], [58]. Aung and colleagues [32] found that 
pre-marking less distinct landmarks helped localize them. This procedure could improve the correlation 
between direct (anthropometric) and indirect measurements. In addition, standardization of measurement 
methods for key small variables such as philtrum length, palpebral fissure and inner canthal distance should 
improve both accuracy and repeatability. However, it is important to point out that measurement error for all 
variables is below 2.5% of the measurement size, a value that is acceptable for most purposes. 
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Figure 2: Average difference 
(error) between the first and 
second measurement obtained 
directly from the subject (♦) and 
the digitized image ( ) taken as 
a percentage of the size of the 
measurement {(T1-T2)/ 
(T1+T2/2)}. 

 Through collection of extensive preliminary data, it was possible to optimize study collection 
conditions to maximize the amount of data obtained from the camera image. For example, improvements were 
made in technique that provided clearer views of significant landmarks. In addition, more accurate marking of 
ambiguous landmarks prior to photographs was found to improve reliability and repeatability. It is also clear 
that development of automated measurement software will significantly reduce error. Based on these results, a 
protocol has been developed that will lead to the uniform collection of digitizing images. This protocol can 
then be used in novel studies of facial changes and abnormalities, which are highly characteristic of 
intrauterine alcohol exposure.  

 Although we did not collect FAS or PFAS individuals in the anthropometric component of the pilot 
study, we can estimate the power of the proposed study. Because the direct anthropometric approach is clearly 
analogous to obtaining the same measurements from the 3-D images, the mean differences, observed by Moore 
et al [2], was employed to estimate the required sample size. The proposed studies would require 30 FAS and 
30 controls in order to have 80% power with an alpha=0.05 to detect the previously observed [2] group 
differences. A larger sample of 60 subjects in each group would be required to have 80% power (alpha=0.05) 
to detect the previously observed mean differences in the PFAS vs. control groups.  

 
Pilot Study of Automated Facial Recognition Technique for Classifying FAS and Non-FAS Images 

Automated face recognition usually starts through the detection and boxing of a pattern, which 
represents the face. It proceeds by normalizing the face image to account for geometrical and illumination 
changes using information about the box surrounding the face and/or eyes location. Finally, it identifies the 
face using appropriate image representation and classification algorithms.  Tools needed to detect and 
normalize face patterns [59] based on pose estimation [60] and eye detection [61], [55] were developed. 
Herein, we describe only tools developed to realize and implement stages of face recognition involved in 
classification tasks specifically targeted to recognizing and separating the FAS face from the normal face. 
Face analysis and classification, a difficult but fundamental task for intelligent systems, depends heavily on 
the particular choice of the features used by the (pattern) classifier. 

Considering the approach for computer-aided FAS diagnosis as a pattern classification problem, we 
must deal with an issue called the “curse of dimensionality,” which means more features do not necessarily 
imply a better classification success rate. Hence, data are first mapped into a lower dimensional space. Since 
the efficient selection of good features is very important, optimal linear projection is used to generate a 
tessellation of a space defined by the training images. This space can then be generated using different 
projections. Projections discussed and implemented to handle classification of FAS, FASD, and control groups  
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are Karhunen-Loève projection (Eigenfaces Approach) and Discriminating Analysis Projection (Fisherfaces or 
Linear Discriminant Approach).  

Facial data for our Pilot Study consists of 30 FAS and 32 non-FAS facial images. The thirty FAS 
(FAS+) images were divided into 2 data sets, 20 images for training and 10 for testing. The 32 non-FAS   
(FAS-) were also randomly partitioned into 22 samples for training and 10 for testing.  Facial images and data 
partitions are shown in Figure 3. 

 

22 FAS(-) Training Samples

10 FAS(-) Testing Samples

22 FAS(-) Training Samples

10 FAS(-) Testing Samples

20 FAS(+) Training Samples

10 FAS(+) Testing Samples

20 FAS(+) Training Samples

10 FAS(+) Testing Samples

22 FAS(-) Training Samples

10 FAS(-) Testing Samples

22 FAS(-) Training Samples

10 FAS(-) Testing Samples

20 FAS(+) Training Samples

10 FAS(+) Testing Samples

20 FAS(+) Training Samples

10 FAS(+) Testing Samples

 

 
 
Figure 3: FAS(+) 
and FAS(-) sample 
images used for 
testing (validation) 
and training 

 
 

 

Images were cropped and normalized into the region that contains only the face. The set of the most 
discriminating features (MDF) was generated for each image in the training set and stored in the recognition 
module. A simple Euclidean distance in this feature space was computed to find the exemplar image nearest to 
the query. Performance of classifiers for FAS prediction, using 25 components and Linear Discriminating 
Analysis (LDA) method, was 70.0%.  Figure 4 shows that 2 classes, FAS(+) and FAS(-), could be well 
separated based on the training data in the MDF space of each sample. Six samples out of the total number of 
tested samples were misclassified. Four incorrect classifications were false positive results and two were false 
negative results. The confusion matrix and the misclassified images are shown in Figure 5. 
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Figure 4: FAS and non-FAS samples on the 
most discriminating feature (MDF) space: 
The training samples of FAS positive ( ) 
and FAS negative ( ) are well separated by 
the separation boundary found by the linear 
discriminating analysis (LDA).  10 FAS 
positive ( ) and 10 FAS negative ( ) 
samples were used for validation. 2 of the 10 
FAS positive samples were misclassified 
( ) while 4 of the10 FAS negative samples 
were misclassified ( ).   
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(a) (b) 

Figure 5: The confusion map 
(left) and the misclassified 
images (right): (a) false positive 
and (b) false negative. 

 
 
Two problems contributed to the misclassification. First, the automatically detected pixel features were 

too primitive for 3-D facial surface analysis. Handpicked landmark features and higher order surface features, 
as described earlier, will provide much more surface information for a more robust and accurate classification. 
Second, the lack of 3-D coordinates severely limits the scope of the feature analysis. The combination of the 3-
D polygon mesh and the image’s texture information should provide more insight to the feature analysis 
process. 

 
Summary of Preliminary Data 

To prepare for this grant submission, pilot data collection was performed to optimize the protocol for 
uniform data collection at multiple sites. A data collection protocol was developed that will insure collection of 
images from each site that are of uniform quality.  An image processing protocol has also been developed to 
insure that images collected in the field are converted into high-quality 3-D images that will provide accurate 
data.  Finally, analytical techniques have been developed both for acquiring anthropometric-like measures 
from the images, and for using the images for new analytical approaches, such as EDMA and facial 
recognition analysis. 

Pilot data suggest that 3-D images will provide data comparable to that obtained from direct 
measurement of the face. We anticipate, therefore that observed group differences previously demonstrated for 
such a direct approach will be applicable to the proposed research. Each study site will collect sufficient 
sample sizes to independently test the hypotheses that FAS individuals as well as those with more subtle 
expressions of FASD (PFAS) can be distinguished on the basis of patterns of facial measurements from control 
and non-alcohol exposed subjects. Moreover, ethnic and age variability in the different sites will allow us to 
define possible differences in patterns of expression by ethnicity and/or age.  Pilot data from the facial 
recognition approach were based on 2-D snapshots of individuals with FAS. We would anticipate better 
discriminating power for this technique when it is employed to samples of 3-D images gathered from the 
various research sites. It is also reasonable to assume that by combining various approaches described herein 
for defining an FASD phenotype, we will generate a set of discriminating features that has better clinical utility 
than currently available using existing methods.   

The investigators in this core have extensive research experience that is directly applicable to the 
proposed study. Our study proposes to build on the work of previous researchers [25], [48], [30], [47], [2] by 
continuing to objectify the diagnosis of FAS and expand the resultant phenotypic criteria to improve detection 
of the more subtle expressions of FASD. We will incorporate recent technological and analytic advances such 
as a 3-D laser scanner, landmark analysis and automated facial recognition to identify a subset of measures 
and/or features that are important predictors of in utero alcohol exposure. These techniques will improve our 
ability to identify a wider range of individuals with fetal alcohol related birth defects and perhaps lay the 
groundwork for a more efficient application of the diagnostic process, through the creation of a better 
discriminant equation and/or machine based facial pattern recognition. 
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D. RESEARCH DESIGN AND METHODS  
The main focus of this core is to acquire a greater understanding of the changes that occur in the face 

during development among individuals who have been exposed to alcohol in utero. Due to the significant 
differences in facial features among the various races as well as the notable changes that occur with age, all 
analyses will initially be site specific and race specific. Only after these data are analyzed to detect population 
and major age effects derived from initial site-specific analyses, will joint analyses be performed combining 
data and controlling for such factors across sites.  

 
UNITED STATES 

 
CP2 (PI: Mattson) 75 children (seen once) 
CP5 (PI: May) ~450 children (seen once) 
CP7 (PI: Coles) 96 children (seen once) 
PP4 (PI: Robinson) 90 children (seen once) 
 
 
 

SOUTH AFRICA 
 
CP4 (PI: Jacobsen)  133 children (seen twice) 
CP5 (PI: May) 350 children (seen once) 
 

MOSCOW 
 
CP2 (PI: Mattson) 300 children 
 (1/3 seen twice) 
 
 
 

POTENTIAL SAMPLE POOL 
 
FAS: 352 children 
FASD: 218 children 
Control: ~900 children 
Totals:  ~1,500 children 
 

Figure 6: Proposed subjects for the 3-D camera protocol 
 
Protocol for data acquisition at the sites 
 
Camera Position and Location  

Based on data from the Pilot Study, uniform camera position and location will be employed at each 
site. Figure 7 (A, B) illustrates the necessary hardware configuration. A Vivid 700 will be mounted to the 
tripod, and will face a swivel chair. The center of the tripod will be approximately 3 feet from the center of the 
swivel chair. Lights on tripods will be placed approximately 5 feet to the left and right of the Vivid 700. The 
left tripod will be rotated -45 degrees relative to the angle of the ray from the Vivid to the chair. The right 
tripod will be rotated 45 degrees relative to the angle of the ray from the Vivid to the chair.  
 

 
(A) (B) 

Figure 7: A. Isometric View of Tripod and chair layout. B. Top View of Tripod and Chair layout. 
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Subject Preparation 
 

Subjects will be asked to remove eyewear and any jewelry that might interfere with the laser beam. All 
subjects will be fitted with a hair net because hair interferes with the laser beam and disrupts the image. Care 
will be taken to insure that the hair and cap do not occlude or distort important facial structures  (e.g. ears or 
key landmarks on the forehead). The “stitching” software, that in latter processing will be used to merge the 
lateral and frontal images, requires each subject to be pre-marked with “registration points.”  The points are 
used by the software to interpolate the 3 images by overlapping homologous points on each image. The marks 
are placed with an eyeliner pencil of contrasting color to the subject’s skin tone (black markers absorb too 
much of the laser light so are to be avoided). Two marks are placed on the forehead, 2 on the sides of the nose, 
1 on each side of the face immediately below the malar (cheek) prominence, and 2 dots on the chin below the 
corners of the mouth and halfway to the bottom of the chin. The marks should be between 1 and 2 mm in 
diameter. In addition to the registration points, we know from previous studies and the pilot study, described 
above, that marking a few key anatomical landmarks improves subsequent measurement accuracy. Using the 
same contrasting eyeliner, the following anatomical points are to be marked: left and right tragion, defined as 
the point on the lateral surface of the face directly anterior to the tragal notch (Figure 8); left and right 
frontotemporale, defined as the point immediately superior to where the eyebrow crosses the temporal ridge; 
and left and right gonion, defined as the point immediately superior to the corner of the mandible (the outer 
corner where the ramus and body of the mandible meet.)  As in the registration, these marks should be no 
larger that 2 mm in diameter.   

 

 
 
 
Figure 8: Illustration of placement of 
facial marks needed to facilitate 
interpolation of images from lateral and 
frontal views. 

 
 
Procedure for Image Collection 

The subject will be placed in the swivel chair facing the Minolta Vivid 700 scanner such that his/her 
face is approximately 26” from the front of the scanner. The scanner will target the image of the face centered 
in the ATI TV Tuner window. Using Minolta’s PET software, two scans of the frontal view will be captured and 
reviewed for gross errors. The frontal view will be rescanned, as necessary, to obtain two quality captures. 
The subject will then be rotated on the swivel chair approximately 80 degrees to the right, with care taken to 
ensure that the subject’s face is still approximately 26” from the scanner and centered in the ATI TV Tuner 
window. As with the frontal view, 2 quality scans will be acquired of the lateral left view using PET software. 
The subject will then be rotated on the chair 180 degrees to the left. After ensuring distance to scanner and 
targeting are maintained, 2 quality right lateral captures will be acquired. Before this process is repeated for 
the next subject, the resultant 6 captures must be saved. 
 
Image Processing and Data Transfer  

After capturing 6 scans, the images will be visually checked for gross mesh errors, including the 
following: 1) facial expressions; 2) exaggerated polygons on the mesh such as those caused by jewelry or hair 
over areas of interest; and 3) major holes in model. If error exists, the subject will be rescanned for the 
particular angle in question. 
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Once a week, data will be transferred from the collection site to the Informatics Core (PI: Stewart) via 
SFTP. The SFTP program uses the secure SSH protocol to physically transfer files between computers. Once 
data are submitted, the Informatics Core will process the files as explained in their core description. Image files 
will reside in an appropriate directory, whose location will be stored in an oracle database, designed to keep 
track of the location of each image using a full path name and to prevent images from entering the database 
twice by storing a checksum, which uniquely identifies each image, even if the filename has been changed. 
Members of the Informatics Core will work with collection sites to ensure efficient and rapid transfer of data. 
If any errors or problems arise in data transfer, the Informatics Core will work with the site to resolve any 
technical difficulties.  

On a regular basis new data will be requested and transferred from the Informatics Core to this Core. 
As described in the Informatics Core, a specialized extraction and transfer routine will be developed between 
this Core and the Informatics Core to allow easy identification of new, released and/or updated images. Files 
will be transferred from the Informatics Core to a secure FTP site at Indiana University. Two scans each of the 
frontal, lateral right and left views of the face will be captured for redundancy by the site. From these 6 
captures, the highest quality model from each view will be selected based on the continuity of facial expression 
between adjacent views. These 3 selected models will be stitched together to obtain a single 3-D model of the 
face. The lateral views will be registered with the frontal view within Raindrop Geomagic® software using the 
coinciding make-up reference points on each view. After registration of views, data points from the lateral 
views that reside ‘more medial than the lateral corners of the eyes’ will be discarded to eliminate as much area 
of overlap as possible. The 3 registered and trimmed models will be merged into a single model. Next, the 
texture of this model will be blended at the seam points using Geomagic’s default value. The result will be a 
single texture mapping 3-D model.  

The 3-D model for study subjects will be transferred to a SFTP web site on a weekly basis for 
permanent storage to the Informatics Core. As sufficient numbers of study subjects are accrued for analysis, 3-
D images will be transferred back to this Core for completion of the work proposed in the specific aims. 

 

Overview of Scientific Aims 
 

 

Aim Aim  
Data Collection Aim  Automatic feature 

extraction & 
feature localization

Training & 
supervisin 

Data Clinical, biological, 
physiological, and 
ethnic/age/gender 
information and 
parameters  

 
 
 

Aim  Surface Feature 
Computation  Anthropometric 

Measurements 
Additional 
Feature Landmark 

 
 Data Fusion & 

feature analysis by 
hybrid classifiers 

Feature Space 
Analysis & 
Classification 

 Covariance 
Analysis  EDMA 

 
 
Figure 9: Flow Chart of the Research Plan and Design  
 

The research plan is sequential with each step feeding data and results to subsequent steps (Figure 9).  
However, each aim will also produce independent results.  Thus, it is anticipated that an outcome of Specific 
Aim 2 will be the production of a refined set of direct measures of the face that will have clinical utility in 
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diagnosing a wider range of individuals with alcohol related birth defects. The intent of Aim 3 is to produce a 
method by which (3-D) images of the face can be assessed by facial recognition software to produce a 
probability estimate that the individual has FASD.  Ultimately, it is anticipated that data from multiple study 
sites can be combined (Aim 4) to produce both more efficient diagnostic criteria across diverse ethnic, age and 
sex groups as well as a better understanding of how the FASD phenotype reflects the underlying 
pathophysiology of ethanol exposure throughout intrauterine development. 
 
 
SPECIFIC AIM 1: Train and supervise personnel at each collection site  
 
Rationale: It is critical for a study of this scope, performed at numerous sites using a novel instrument, that site 
personnel be well trained to perform the study protocol. In addition, it is essential that sites be frequently 
evaluated to ensure that the study protocol is consistently applied and that new personnel are adequately 
trained. To perform regular quality assessment of international sites can be costly. Therefore, we propose to 
initially train all study personnel in the use of the camera during an orientation meeting scheduled in the first 
year, at the start of the study. Subsequently, to reduce costs, while still maintaining a frequent and high quality 
review of data collection procedures, an identical cast will be utilized at each site. Each collection site will 
send images obtained from the cast at regular intervals, which will then be used to ensure that the study 
protocol is correctly implemented. 
  
Orientation Meeting and Initial Training 

An initial orientation meeting attended by all critical study personnel will be held at the start of this 
collaborative study. This will be the venue for all site investigators and coordinators to meet in person with key 
project personnel. A manual with all study protocols for the collection of data using the Minolta camera will be 
prepared prior to the meeting and distributed to personnel from each site. 

Two sessions will be held during the orientation meeting. The first session will be devoted to a review 
of the overall protocol and a demonstration of the study procedures, including data collection from subjects as 
well as data processing. During the second session, the investigators and coordinators responsible for 
collection of data at the sites will be trained in data acquisition and data transfer. Subjects will be prepared for 
imaging (hairnets, registration points, and landmark identification). Images will be collected from multiple 
volunteers, and feedback will be provided to the sites to improve the quality of their data collection. Following 
this second session, minor logistical protocol amendments will be developed, if necessary. All trainees will 
also be asked to mark and identify key landmarks on the study cast on 2 separate occasions and images will be 
prepared from each of these attempts. The 2 images will be used to generate baseline data on the likely 
interobserver and intraobserver measurement error caused by variation in landmark identification and marking. 

 
Ongoing Training and Quality Assurance 
 To reduce costs associated with ongoing training and maintaining high quality, an identical cast will be 
made for each site. A single use alginate mold will be made from the head of an adolescent subject. From this 
alginate mold a dental stone casting will provide the master model of the adolescents subject's head and face. 
A durable, multi-use, silicon rubber mold will be made from the dental stone master model. Several identical 
hard polyurethane castings will be generated from the silicon rubber mold. The castings will be uniformly 
mounted on bases and used as photographic training models.  

On a monthly basis, each site will be required to collect images using the cast and then transfer these 
data to Indiana University. Images for each of the 3 positions will be reviewed and if data quality issues are 
identified, the site will be contacted directly and procedures will be reviewed and the images recollected.  
Images sent from each site will also be processed rapidly, to allow for quick identification of any data 
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collection errors or protocol deviations. Sites will be contacted if any consistent data collection errors are 
identified. This will be particularly important when there is change in site personnel. 
 
 
SPECIFIC AIM 2: Utilize the measurements from the 3-D facial imaging for analyses designed to identify 
those variables that most efficiently differentiate alcohol exposed from control subjects 
 
Rationale: In previous work, Moore et al. [47], [2] demonstrated that individuals with documented FAS could 
be effectively separated from control subjects using anthropometric facial measurements and discriminant 
function analysis. Moreover, individuals with a more subtle expression of intrauterine alcohol exposure 
(PFAS) were also distinguishable from controls using this same methodology. We begin this aim with the 
assumption that the same ability can be demonstrated using measurements taken from 3-D images of the face 
(as opposed to direct measurement of the face). Thus, the null hypothesis we will test in this aim is that facial 
images of individuals with documented prenatal exposure to alcohol do not differ in facial form from 
individuals with no such exposure. This hypothesis will be tested using standard linear measurements taken 
from images of exposed and control individuals matched as nearly as possible for age ethnicity/race. In 
addition we will use EDMA to test the hypothesis. Euclidean distance matrix analysis has also been used in 
landmark-based craniofacial modeling and face recognition. We will apply 2 types of landmark matrices to 
study the morphological (surface and shape) differences between the exposed and control groups and to 
determine the ability of this method to correctly classify individuals in the FAS, PFAS, and control groups. We 
will test the following null hypothesis: there are no morphological differences between exposed and control 
groups, therefore, this method cannot correctly, with sufficient specificity and sensitivity, classify these 
individuals. 

 
Anthropometric Variables 

Methodologies used in previous studies will be replicated as closely as possible in this study [42], [47]. 
We will identify standard anthropometric landmarks on the images and utilize these to generate the same set of 
measurement variables that were used in our previous Pilot Study. Limitations of the laser imaging technique 
prevent assessment of head circumference from the image; therefore, this data will be collected separately by 
using a standard anthropometric measuring tape. Landmark identification on the 3-D images will follow the 
procedures for landmark identification outlined in Farkas [33] and Aung et al [32]. The latter study noted that 
certain key landmarks that are on bony or curved surfaces need to be pre-marked at the time the image is 
obtained to result in accurate and repeatable measurements. Similar findings were evident from our pilot study; 
therefore, the following points will be pre-marked at the time the image is obtained: right and left 
frontotemporale, bigonial, and tragion. 

Since 2 images are taken of each individual, the measurer will select for measuring the image that has 
the clearest viewing of the needed landmarks.  
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Figure 10: Final stitched image 

 

Using the Raindrop Geomagic® software program, landmarks will be sequentially identified and 
marked on the previously stitched image. The software program automatically calculates the distances between 
the predetermined sets of points to produce the linear measurements. Following the same protocol used in 
Moore et al. [47], this procedure will be repeated at least twice on each individual. Thus, every image will have 
the landmarks identified on 2 separate occasions. The same set of linear measurements will be generated in 
each case and compared. In previous studies we used the rubric that any 2 measurements of the same variable 
that are more than 2 mm apart must be repeated a third time. This approach presented some problems of scale 
since a 2 mm error in a small measurement is of greater significance that the same error in a large 
measurement. In the present study the measuring software will allow a more precise approach. Thus, we will 
use the rule that any 2 measurements of the same variable that are more than 2% different between the first and 
second trials must be remarked and remeasured a third time. By convention, before data are analyzed we will 
average the 2 closest measurement values. All measurements will be taken by 1 individual (ESM) a trained 
anthropometrist, who will be blinded to the alcohol exposure status of the subjects. Linear measurements 
obtained from the average of the 2 closest trials in each individual will be used to test the null hypothesis of no 
difference between facial forms of exposed and non-exposed individuals.  

Testing this null hypothesis will be complicated by several factors. First, the sample consists of 
individuals who will have a wide spectrum of craniofacial anomalies associated with differing levels of 
intrauterine alcohol exposure (FASD). Second, the sample consists of individuals of differing race/ethnicity 
(African, Russian, North American), different ages (infant to adult), and sex (Figure 8). Thus, it is necessary to 
control for effects of these factors in order to describe differences due to alcohol exposure. Analysis of 
covariance (ANCOVA), rather than the discriminate function analysis employed in earlier work, will be used 
in the present study because it can control for these factors and will identify those craniofacial variables that 
most significantly contribute to the differentiation of alcohol exposed and control groups. Analysis of 
covariance also allows us to determine which individual measurements are significantly influenced by 
race/ethnicity, sex and/or age. This information can lead to important insights on the pathophysiology of 
alcohol exposure as it reveals how patterns of expression vary according to exposure, developmental age, sex, 
and population group.   

Analysis of covariance results will reveal those variables that are most significantly affected by 
intrauterine alcohol exposure. These variables will then be used in logistic regression analysis to develop a 
predictive model. This model will be tested or validated on the portion of the sample withheld for this purpose.  
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Landmark analysis using EDMA method   
In landmark analysis, we limit ourselves to point features (landmarks) and linear distances between 

landmark points. There are a number of sophisticated morphometric techniques that use a higher dimension of 
analysis to assess biological form. These techniques purport to offer a better means of assessing form (either 
within a growing individual or between samples of individuals) than can be obtained by using simple linear 
measurements (which are generally just assessing size differences between forms).  The approach we will use 
is based primarily on the EDMA (Euclidean Distance Matrix Analysis) method [51], because it provides a set 
of flexible and easy to use landmark analysis tools that allows the utilization of landmark data identified in the 
previous stage of the study, and because it has proven useful in the exploration of similar morphometric 
problems using 3-D landmark data (from computerized tomography scans). Our analysis will be carried out in 
three stages: 1) form matrix analysis; 2) optimal landmark set identification; and 3) distance ratio matrix 
analysis. 

In the first stage, we will directly apply EDMA method and its software WinEDMA to analyze samples 
(FAS, PFAS and nonalcohol exposed, controls) of a fixed set of landmarks. For a given set of landmark points 
[Pi] (i =1, 2, …, k), defined over a group of samples (e.g. FAS group or controlled group), the form matrix, 
FM, in EDMA  is defined as     

                                            FM = [dij]  (i,j = 1, 2, … k)                                                      (1) 

where dij is the distance between Pi and Pj. To allow comparisons between different sized face samples, the 
distances between landmarks are normalized by the mean value of this distance over a population [47]. The 
FORM procedure in WinEDMA provides a quantitative measure for comparing 2 populations of samples. For 
two face samples A and B, the Form Difference Matrix, FDM, is defined as 

 
 FDM(A,B) = [fdmij] = [dij(A) / dij(B)] (2) 

The Maximum Difference Ratio, TAB, can then be computed to characterize the overall difference between 2 
forms: 

  TAB = 
max(fdmij) / min(fdmij) (3) 

In EDMA, the form A and B can be the statistical mean forms of two populations (computed within the FORM 
procedure). This process can be directly applied to measure the shape difference patterns between FAS, PFAS 
and control groups using a pre-determined set of landmark points (initially the same as used in the 
anthropometric analysis).  The TAB value computed for PFAS and control groups, or PFAS and FAS groups 
should be between 1.0 and the value computed for FAS and control groups. Large TAB values indicate good 
discriminating power for the given landmark set. The mean form of each group will then represent the pattern 
of distance measures for each group.  As WinEDMA also provides confidence interval testing for the Form 
Difference Matrix, the final pattern matrix for each case will have a confidence interval associated with each 
matrix element. 

The second stage of analysis aims to compute an optimal subset of landmarks from a large set that can 
best discriminate given 2 groups (e.g. FAS and controlled). WinEDMA provides a procedure called 
INFLUENTIAL, which computes the most influential landmark for a given problem by ranking the off-
diagonal elements in the FDM matrix [62]. This allows us to remove the least influential landmarks in an 
iterative fashion. Another way to measure the discriminating power of each landmark is to compute the 
Maximum Difference Ratio for each landmark individually. This gives a more cumulative measure of 
influence for each landmark. The Maximum Difference Ratio, Ti, of a landmark point Pi is computed by 
comparing only the FDM elements that are related to Pi, i.e.  

  Ti = 
maxj(fdmij) / minj(fdmij) (4) 
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This equation provides the maximum difference over all distances related to Pi. A large Ti within the FAS 
sample space indicates that Pi may not be a good discriminating point for the FAS problem. This allows us to 
iteratively move landmarks in and out of the target set (e.g. subtract the point with large Ti value within a 
sample group and small Ti values across two groups). This process will continue iteratively until the overall 
Maximum Difference Ratio TAB is within a satisfactory level. 

In the third stage of landmark analysis, we will examine the characteristics of FAS (and PFAS) faces 
that involve only a subset of the distances between landmarks and their relative ratios. Here elements of the 
form matrix are ratios of distances between landmarks. The goal is to extract the most useful distance measures 
instead of landmark points. Let {di} be the set of all distance measures. The Distance Ratio Matrix (Form 
Matrix in EDMA) is defined as  

  FM = 
{rij}, where rij = di / dj (5) 

The analysis process of this form matrix is very similar to the analysis for the form matrix based on normalized 
distances, except that the basic elements here are distance measures. For instance, the Maximum Difference 
Ration Ti is now defined for each distance measure, and we will be looking for the optimal set of distances 
instead of landmarks. 

 
SPECIFIC AIM 3: Utilize algorithms and methods derived from the emerging field of Automated Facial 
Recognition (AFR) to extract and identify the most discriminating higher order surface features from 3-D 
facial images, with the goal of developing an automated method of identifying facial features diagnostic of 
prenatal alcohol exposure. 
 
Rationale: Landmark based methods focus on point features and linear distances. However, we believe that 
facial features that best represent FAS characteristics are likely to be more complex and higher order than 
points and linear distances. In particular, features that are defined on a surface such as curvature, areas and arc 
length, generally cannot be defined by landmarks. In order to make use of higher order features in FASD 
diagnosis, automatic feature extraction algorithms need to be developed, as manual definition of such features 
are often difficult and inaccurate. Sophisticated feature analysis methods will also need to be applied to 
identify the optimal feature set that are most capable of separating FAS, PFAS and control groups. Our 
approach combines discrete differential geometry, pattern recognition, and facial recognition techniques, and 
will provide a comprehensive and automatic process for 3-D feature extraction, identification, classification 
and validation.  

 

Surface Feature Computation 
Features are information extracted from the input data that represents certain characteristics of the 

original object. As a general concept, features can include simple elements such as points and pixels, or more 
complex information such as areas, curvatures, flatness, etc. The feature analysis technique presented in the 
next section is a general technique that can, in principle, be applied to any type of features. However, the 
appropriate selection of features is often critically important to the data analysis process. As discussed earlier, 
higher order 3-D facial surface features will be necessary to produce robust and accurate FASD classifications. 
A main problem in surface feature extraction is the discrete nature of the scanning data. Most surface features 
are defined on a mathematical surface. With only 3-D scanning data available, we will be limited to computing 
surface features using discrete differential geometry techniques [63]. Two types of features will be computed: 
local curvature features and surface measurement features. 

Curvatures are local properties of a point on the surface. There are 3 types of curvatures that are of 
interest to us: 
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1. Principle curvatures: k1, k2. They are the maximum and minimum curvatures in the 2 principle 
directions (the directions with maximum and minimum curvatures). 

2. Gaussian curvature: K. It represents the local curvature change at a point. A positive value represents 
an ellipsoid-like local shape, a zero value represents a locally flat tendency or a parabola-like local 
shape, and a negative value represents a change of curvature direction, with a hyperbolic local surface. 

3. Mean curvature: H. It represents the average curvature over all directions around a point. It provides a 
quantitative measure for the “curving” level of the surface at a point. 

Surface measurements include arc-distances and area-related measures. On a continuous surface, 
arc-distance can be defined as the geodesic distance, which is theoretically the shortest distance on a 
surface between 2 points. A discrete algorithm for geodesic distance can be derived using discrete 
differential geometry operators. A simple application of the arc-distance is to replace the linear distance in 
landmark analysis. It should provide better descriptive power than linear distance. The path used to 
compute the arc-distance can also be used to define the boundaries of regions by picking only landmark 
points. Many properties and features can be computed for such regions. The obvious measure is the area of 
the region. Certain integrated curvatures over the region may also be properly defined to represent the 
overall curving level of the region. 

 
Feature Extraction, Selection, and Classification – A Discriminate Features Space for FAS/FASD 

Classification 
The non-accidental spatiotemporal properties of the world surrounding us have much to do with the 

design of visual systems.  This viewpoint, as formulated by Barlow [64] (adaptation and decorrelation in the 
cortex called sensory coding), and more recently by Ruderman [65] amongst others, has led to a growing 
interest in: (1) how the statistical properties of natural images (signals) enter into the optimization of the visual 
system, and (2) the statistical characterization of the natural images themselves.  The regularities of the 
surrounding world have been encoded mostly in terms of 2nd order statistics or corresponding spectral 
information, even though most recently there is a growing and justified interest in using higher order statistics 
as well. Methods based on decorrelating 2nd order statistics belong to the class of PCA (Principal Component 
Analysis) methods, while those concerned with independent higher order statistics belong to the class of ICA 
(Independent Component Analysis) methods. Optimization of the visual system would include design criteria, 
such as: 1) redundancy minimization - decorrelation and independent component analysis (ICA); 2) 
minimization of the reconstruction error (rms); 3) maximization of information transmission (infomax); and 4) 
sparseness of the neural code [66]. While there has been a growing interest concerning natural scene 
statistics and building the neural code to capture them [67], the range of imagery which could be of interest 
goes much beyond natural scenes. 

Feature selection in pattern recognition involves the derivation of salient features from the sensory 
input data or the feature vector formed by appropriate geometry and statistic measurement in order to reduce 
the amount of data used for classification and simultaneously to provide enhanced discriminatory power.  The 
selection of an appropriate set of features is one of the most difficult tasks in the design of pattern 
classification systems. At the lowest level, the raw feature data is derived from noisy sensor data, the 
characteristics of which are complex and difficult to characterize. In addition, there is considerable interaction 
among features, which must be identified and exploited. The typical number of possible features, however, is 
so large as to prohibit any systematic exploration of all but a few possible interaction types (e.g., pairwise 
interactions). In addition, any sort of performance-oriented evaluation of feature subsets involves building and 
testing the associated classifier, resulting in additional overhead costs. 

Data will first be mapped into a lower dimensional space. Optimal linear projection will be used to 
generate a tessellation of a space defined by the training images. This space will then be generated using 
different projections. The Karhunen-Loève projection (Eigenfaces Approach) and Discriminating Analysis 
Projection (Fisherfaces or Linear Discriminant Approach will be employed.  
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Karhunen-Loève Transformation (KLT) is an information theory approach of getting insight into the 
information content of facial images [68]. In mathematical terms, the principal components (PC) of the 
distribution of faces are calculated. These are the eigenvectors of the covariance matrix of the set of facial 
images, treating an image as a point or vector in a very high dimensional space. The eigenvectors are ordered, 
each one accounting for a different amount of the variation among the facial images. A scatter matrix formed 
by training images defines the principal components analysis (PCA) subspace. PCA generates a set of 
orthonormal bases known as principal components. Let X=[X1, X2,…, Xn] be the sample set of the original FAS 
images. After normalizing the images to unity norm and subtracting the ground mean a new image set 
Y=[Y1,Y2,...,Yn] is obtained. Each Yi represents a normalized image with dimensionality N, Yi=(yi1,yi2,…,yiN)t, 
where i=1,2,..., n.  The eigenvector and eigenvalue matrices Φ, Λ are computed as 

(Y tY)Φ=ΦΛ (6) 
Note that YtY is an n-by-n covariance matrix where Λ=diag(λ1, λ2, …, λn), and Φ=[Φ1, Φ2, …, Φn]. If 

one assumes that the eigenvalues are sorted in decreasing order, λ1 ≥ λ2 ≥…≥ λn, then the first m leading 
eigenvectors define matrix P 

P=[Φ1, Φ2, …, Φm]. (7) 
The basis vectors in P are also known as eigenfaces.   
The new feature set Z with lower dimensionality m (m<<N) is then computed as 

Z = P t Y (8) 
The KL projection produces a set of Most Expressive Features (MEFs) and reduces the feature 

dimensionality from N to m. Fig. 11 shows the sample FAS and non-FAS data points represented as linear 
combination of eigenfaces with different projection (coefficients). 
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Figure 11: Sample FAS and non-FAS face image in 
an eigen space (illustrated by the first three 
components). 

 
Discriminant Karhunen-Loève (DKL) Projection for FAS Classification 

The Linear Discriminant Analysis (LDA) projection is performed in the space of the KL projection.  
Thus, the Fisher Linear Discriminants are defined in the m dimensional subspace using the first m principal 
components.  Fisher’s method defines c basis vectors where c=k-1 or c= k, where k is the number of classes.  
The aim is to find a projection matrix W that maximizes the ratio of distances between classes and distances 
within each class in order to find the best separation boundary for different classes (see Fig.12) [69]. 
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Figure 12: Most discriminating features (MDFs) space vs. Most expressive features (MEFs) space 

 

Let the class means be Mi, i=1,2,.., c. The within-class scatter matrix Sw for ni samples from class i 
can be defined as 

∑ ∑= =
−−=

c

i
T

ij
n

j ijw MXMXS i

1 1
)()(  (9) 

where Xj is the projection of the sample point j in MDF space.  For a grand mean vector M for all samples from 
all classes, the between-class scatter matrix Sb is defined as 
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Then the column vectors of projection matrix W are the eigenvectors of Sw
-1Sb associated with the 

largest eigenvalues [70]. Training images must be partitioned into classes and are used to determine W. 
During testing, the LDA algorithm performs the classification in LDA space in exactly the same manner 
that the PCA algorithm performs classification in the PCA subspace and then projected on the LDA space 
for classification. 

 
SPECIFIC AIM 4: Combine the results from the direct and higher order measurements derived from the 3-D 
facial imaging with variables collected from other study domains to improve the power to accurately 
discriminate alcohol exposed from control subjects and to better understand the pathophysiological effects of 
ethanol on human development. 
 
 
Rationale: One of the major goals of this research is to develop tools to assist in the definitive diagnosis for 
FAS and, more broadly FASD, as well as to differentiate the core deficits that may be expressed in different 
age and ethnic/racial categories. To accomplish this goal, information from the various cores, collecting 
clinical, morphometric, behavioral, and neurological data, will be used in a combined analysis to: 1) determine 
the most effective set of criteria for differentiating controls and alcohol exposed individuals; and 2) define key 
differences in the pattern of expression that segregate by ethnicity/race and/or age; 3) analyze correlations 
between data types and between subject groupings to generate a better understanding of the action of ethanol 
on human development . To meet these objectives, quantitative morphometric data (both landmark based and 
feature-space based) from 3-D images will be combined with significant variables collected from other 
domains to define the most efficient grand set of variables or algorithms for differentiating alcohol exposed 
individuals from controls. In addition, data from various domains will be compared across sex, age, and ethnic 
groups to identify patterns of variation that correlate with these subject categories.  Examination of relationship 
between data sets can reveal, for example the degree to which facial form in alcohol exposed individuals 
reflects specific underlying neural anatomical disruptions.  Such information should improve our 
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understanding of both the broad effects of ethanol exposure on development as well as improve our 
understanding of the factors contributing to the wide variation in the expression of these effects.  
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Data Fusion Through Hybrid Classifier 
The definitive diagnosis for FAS (or more broadly FASD) as well as the ability to differentiate the core 

deficits associated with prenatal alcohol exposure, will require correlation of data from multiple sources, 
(dysmorphology, morphometric, neurological, behavioral) as well as of different sub-categories such as age, 
ethnicity and sex.  Data fusion is a term used to describe the process of correlating data acquired by different 
means.  The use of discriminating feature space discussed earlier and the method of intelligent hybrid learning 
systems, complements analysis of FASD by fusing data from multiple modalities.  It is also particularly 
important to combine and derive a set of key discriminating features that can be highly correlated to 
FAS/FASD. 

Intelligent hybrid learning systems involve specific (hierarchical) levels of knowledge defined in terms 
of concept granularity and corresponding interfaces.  This knowledge is usually represented by different data 
input from various measurements.  Fusing multiple data, the hierarchy is designed to include connectionist and 
symbolic levels, with each level possibly consisting of ensemble architecture by itself, and with proper 
interfaces between levels. As one moves upward in the hierarchical structure, we witness a corresponding 
degree of data compression allowing more powerful ('reasoning') methods to be employed on reduced amounts 
of data.  The advantages provided by each level consist of: 

• Connectionism can handle the whole range of sensory inputs and their variability ('noise'). Its 
distributed nature provides for fault tolerance to missing and incomplete data.  The output of such 
modules can be combined across ensemble of such networks.  Last but not least, the output of such 
modules yields the sought after symbolic units needed for later stages of processing. 

• Symbolic methods are compact and can fuse data from different sensory modalities and cognitive 
modes.  As a consequence one can interpret the sensory input and explain it using meaningful coding 
units. 

An early example of homogeneous ensembles is the Meta-Pi architecture suggested by Hampshire and 
Waibel [71] for speech interpretation. Homogeneous ensembles of symbolic modules are usually referred to as 
multistrategy learning methods.  As an example of heterogeneous ensembles, Greenspan [72] has proposed 
architecture for the integration of neural networks and rule-based methods using unsupervised and supervised 
learning for pattern recognition tasks. 

The hybrid classifiers consist of an ensemble of connectionist networks - radial basis functions (RBF) 
(Fig. 13.a) - and inductive decision trees (DT). The reason behind using RBF is its ability for clustering similar 
features before classifying them. Decision trees (DT) implement the symbolic stage using the RBF outputs. We 
propose a hybrid learning system (Fig. 13.b) using the ensembles of RBF (ERBF) and the hybrids consisting of 
ERBF and DT [54]. 
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Figure 13: (a) Radial Basis Function (RBF) and (b) the hybrids consisting of 
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ensembles of RBF (ERBF) and decision Tree (DT). 

SUMMARY  
Alcohol exposure results in a variety of clinical sequellae, with significant implications for the 

individual’s future potential. We have created an interdisciplinary group of investigators who will employ 
novel applications of 3-D facial imaging to improve our ability to delineate the effect of prenatal alcohol 
exposure on facial features and lead to more effective clinical diagnosis of FAS, as well as the more broadly 
defined FASD. . These studies will inform basic science research by identifying common pathways affected 
following alcohol exposure thereby provide improved understanding of the pathophysiological effects of 
ethanol on human development.. Completion of the proposed specific aims also has the potential to improve 
our ability to identify and diagnose individuals who have had alcohol exposure in utero. Through this 
collaborative research effort organized under the “Collaborative Initiative on Fetal Alcohol Spectrum 
Disorders” (CIFASD), large numbers of diverse subjects will be recruited providing the optimum research 
environment to complete these studies.  

 
e.  HUMAN SUBJECTS  
 
1. Risks to Subjects 

 

Human Subjects Involvement and Characteristics 
The human subjects for this core will all be recruited and evaluated by the individual projects 

comprising this Collaborative Study. We anticipate a total of 352 FAS, 218 FASD and ~900 non-alcohol 
exposed individuals will have 3-D images collected through their participation in the primary project and these 
data will then be analyzed by this core. The subjects will vary in age, but typically will be under the age of 18 
years. There will be no exclusion by race, gender or ethnic characteristics.  Importantly, this core will not 
recruit any subjects. The recruiting site will assign a unique study identifier to the subject and will not provide 
our core with the study subject’s name.  
 

Sources of materials 
All 3-D images will be collected for research purposes only, from consenting study subjects.  
 

Potential Risks 
The physical, social and legal risks of this project are minimal. This system uses a Class 1 (FDA), eye-

safe laser to rapidly scan and digitize the face into a texture mapped 3-D model. While completing the protocol 
to obtain a 3-D image, the subject might experience a small amount of discomfort when required to remain still 
for short periods of time. Computer files will be permanently stored as part of the Informatics Core (PI: 
Stewart) which has extensive security measures in place to protect subject data. During data processing and 
analysis, the files will be stored on SUN microcomputers located in the Department of Medical and Molecular 
Genetics. Security of data is protected by the need for access to the SUN microcomputer, specific account 
numbers and passwords and specific commands allowing the user to reach critical data. Every precaution has 
been taken to assure that computer confidentiality is maintained.  
 
2. Adequacy of Protection Against Risks 

 
Recruitment and Informed Consent 
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site will assign a unique study identifier to the subject. This core will not have the study subject’s name and 
will identify subject’s only through their unique study identifier.  

 
Protection Against Risk  

To reduce the risk of eye damage due to the use of laser to capture the 3-D image, a system will be 
used which employs a Class 1 (FDA), eye-safe laser.  Extensive security measures have been taken to 
ensure the privacy and confidentiality of all data that will be analyzed at Indiana University. Security of 
data is protected by the need for access to the SUN microcomputer, specific account numbers and 
passwords and specific commands allowing the user to reach critical data. Use of a microcomputer for data 
storage has many advantages over the use of mainframe computers, the greatest of which is heightened 
security. Every precaution has been taken to assure that computer confidentiality is maintained.  

 

3. Potential Benefits of the Proposed Research to the Subjects and Others 
There are no medical interventions or direct benefits gained by the subject from completing the 3-D 

image protocol to generate data for this core. The indirect benefits of participation include an opportunity 
to be proactive in the search for causes and/or contributing factors associated with FAS and the satisfaction 
of having the opportunity to contribute to the general knowledge of FAS.   

 
4. Importance of the Knowledge to Be Gained 

Alcohol exposure results in a variety of clinical sequellae, with significant implications for the 
individual’s future potential. We have created an interdisciplinary group of investigators who will employ 
novel applications of 3-D facial imaging to improve our ability to delineate the effect of prenatal alcohol 
exposure on facial features. These studies will inform basic science research by identifying common pathways 
affected following alcohol exposure. Completion of the proposed specific aims also has the potential to 
improve our ability to identify and diagnose individuals who have had alcohol exposure in utero. Through this 
collaborative research effort organized under the “Collaborative Initiative on Fetal Alcohol Spectrum 
Disorders” (CIFASD), large numbers of diverse subjects will be recruited providing the optimum research 
environment to complete these studies.  

 
 
Women and Minority Inclusion in Clinical Research 
 
Inclusion of Women  

FAS affects both men and women. It is the aim of the Collaborating investigators to recruit subjects 
irrespective of gender.  

 
Inclusion of Minorities 

FAS affects individuals of all races. It is the aim of the Collaborating investigators to recruit subjects 
irrespective of race. In addition, through the recruitment of subjects worldwide, there will be broad 
representation of many minority subjects including Native Americans, African Americans, and Mixed Race 
individuals from South Africa.  
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Inclusion of Children 
 The focus of this Collaborative study is the recruitment of children, particularly those under the age of 
18 years. Therefore, there will be almost exclusive inclusion of children. Importantly, this site will not recruit 
or image any subjects.  We will solely receive and analyze data collected by Collaborating sites. 
 
 
f. VERTEBRATE ANIMALS 

Not Applicable. 
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